Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+1-4x^{2}=4x+5
Tangohia te 4x^{2} mai i ngā taha e rua.
2x+1-4x^{2}-4x=5
Tangohia te 4x mai i ngā taha e rua.
-2x+1-4x^{2}=5
Pahekotia te 2x me -4x, ka -2x.
-2x+1-4x^{2}-5=0
Tangohia te 5 mai i ngā taha e rua.
-2x-4-4x^{2}=0
Tangohia te 5 i te 1, ka -4.
-4x^{2}-2x-4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-4\right)\left(-4\right)}}{2\left(-4\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -4 mō a, -2 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-4\right)\left(-4\right)}}{2\left(-4\right)}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4+16\left(-4\right)}}{2\left(-4\right)}
Whakareatia -4 ki te -4.
x=\frac{-\left(-2\right)±\sqrt{4-64}}{2\left(-4\right)}
Whakareatia 16 ki te -4.
x=\frac{-\left(-2\right)±\sqrt{-60}}{2\left(-4\right)}
Tāpiri 4 ki te -64.
x=\frac{-\left(-2\right)±2\sqrt{15}i}{2\left(-4\right)}
Tuhia te pūtakerua o te -60.
x=\frac{2±2\sqrt{15}i}{2\left(-4\right)}
Ko te tauaro o -2 ko 2.
x=\frac{2±2\sqrt{15}i}{-8}
Whakareatia 2 ki te -4.
x=\frac{2+2\sqrt{15}i}{-8}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{15}i}{-8} ina he tāpiri te ±. Tāpiri 2 ki te 2i\sqrt{15}.
x=\frac{-\sqrt{15}i-1}{4}
Whakawehe 2+2i\sqrt{15} ki te -8.
x=\frac{-2\sqrt{15}i+2}{-8}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{15}i}{-8} ina he tango te ±. Tango 2i\sqrt{15} mai i 2.
x=\frac{-1+\sqrt{15}i}{4}
Whakawehe 2-2i\sqrt{15} ki te -8.
x=\frac{-\sqrt{15}i-1}{4} x=\frac{-1+\sqrt{15}i}{4}
Kua oti te whārite te whakatau.
2x+1-4x^{2}=4x+5
Tangohia te 4x^{2} mai i ngā taha e rua.
2x+1-4x^{2}-4x=5
Tangohia te 4x mai i ngā taha e rua.
-2x+1-4x^{2}=5
Pahekotia te 2x me -4x, ka -2x.
-2x-4x^{2}=5-1
Tangohia te 1 mai i ngā taha e rua.
-2x-4x^{2}=4
Tangohia te 1 i te 5, ka 4.
-4x^{2}-2x=4
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-4x^{2}-2x}{-4}=\frac{4}{-4}
Whakawehea ngā taha e rua ki te -4.
x^{2}+\left(-\frac{2}{-4}\right)x=\frac{4}{-4}
Mā te whakawehe ki te -4 ka wetekia te whakareanga ki te -4.
x^{2}+\frac{1}{2}x=\frac{4}{-4}
Whakahekea te hautanga \frac{-2}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{1}{2}x=-1
Whakawehe 4 ki te -4.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=-1+\left(\frac{1}{4}\right)^{2}
Whakawehea te \frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{4}. Nā, tāpiria te pūrua o te \frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{2}x+\frac{1}{16}=-1+\frac{1}{16}
Pūruatia \frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{2}x+\frac{1}{16}=-\frac{15}{16}
Tāpiri -1 ki te \frac{1}{16}.
\left(x+\frac{1}{4}\right)^{2}=-\frac{15}{16}
Tauwehea x^{2}+\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{-\frac{15}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{4}=\frac{\sqrt{15}i}{4} x+\frac{1}{4}=-\frac{\sqrt{15}i}{4}
Whakarūnātia.
x=\frac{-1+\sqrt{15}i}{4} x=\frac{-\sqrt{15}i-1}{4}
Me tango \frac{1}{4} mai i ngā taha e rua o te whārite.