Whakaoti mō x
x=18\sqrt{11}-54\approx 5.699246226
x=-18\sqrt{11}-54\approx -113.699246226
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{2x}{3}x=72\left(6-x\right)
Whakareatia ngā taha e rua o te whārite ki te 9.
\frac{2xx}{3}=72\left(6-x\right)
Tuhia te \frac{2x}{3}x hei hautanga kotahi.
\frac{2xx}{3}=432-72x
Whakamahia te āhuatanga tohatoha hei whakarea te 72 ki te 6-x.
\frac{2x^{2}}{3}=432-72x
Whakareatia te x ki te x, ka x^{2}.
\frac{2x^{2}}{3}-432=-72x
Tangohia te 432 mai i ngā taha e rua.
\frac{2x^{2}}{3}-432+72x=0
Me tāpiri te 72x ki ngā taha e rua.
2x^{2}-1296+216x=0
Whakareatia ngā taha e rua o te whārite ki te 3.
2x^{2}+216x-1296=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-216±\sqrt{216^{2}-4\times 2\left(-1296\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 216 mō b, me -1296 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-216±\sqrt{46656-4\times 2\left(-1296\right)}}{2\times 2}
Pūrua 216.
x=\frac{-216±\sqrt{46656-8\left(-1296\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-216±\sqrt{46656+10368}}{2\times 2}
Whakareatia -8 ki te -1296.
x=\frac{-216±\sqrt{57024}}{2\times 2}
Tāpiri 46656 ki te 10368.
x=\frac{-216±72\sqrt{11}}{2\times 2}
Tuhia te pūtakerua o te 57024.
x=\frac{-216±72\sqrt{11}}{4}
Whakareatia 2 ki te 2.
x=\frac{72\sqrt{11}-216}{4}
Nā, me whakaoti te whārite x=\frac{-216±72\sqrt{11}}{4} ina he tāpiri te ±. Tāpiri -216 ki te 72\sqrt{11}.
x=18\sqrt{11}-54
Whakawehe -216+72\sqrt{11} ki te 4.
x=\frac{-72\sqrt{11}-216}{4}
Nā, me whakaoti te whārite x=\frac{-216±72\sqrt{11}}{4} ina he tango te ±. Tango 72\sqrt{11} mai i -216.
x=-18\sqrt{11}-54
Whakawehe -216-72\sqrt{11} ki te 4.
x=18\sqrt{11}-54 x=-18\sqrt{11}-54
Kua oti te whārite te whakatau.
\frac{2x}{3}x=72\left(6-x\right)
Whakareatia ngā taha e rua o te whārite ki te 9.
\frac{2xx}{3}=72\left(6-x\right)
Tuhia te \frac{2x}{3}x hei hautanga kotahi.
\frac{2xx}{3}=432-72x
Whakamahia te āhuatanga tohatoha hei whakarea te 72 ki te 6-x.
\frac{2x^{2}}{3}=432-72x
Whakareatia te x ki te x, ka x^{2}.
\frac{2x^{2}}{3}+72x=432
Me tāpiri te 72x ki ngā taha e rua.
2x^{2}+216x=1296
Whakareatia ngā taha e rua o te whārite ki te 3.
\frac{2x^{2}+216x}{2}=\frac{1296}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{216}{2}x=\frac{1296}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+108x=\frac{1296}{2}
Whakawehe 216 ki te 2.
x^{2}+108x=648
Whakawehe 1296 ki te 2.
x^{2}+108x+54^{2}=648+54^{2}
Whakawehea te 108, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 54. Nā, tāpiria te pūrua o te 54 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+108x+2916=648+2916
Pūrua 54.
x^{2}+108x+2916=3564
Tāpiri 648 ki te 2916.
\left(x+54\right)^{2}=3564
Tauwehea x^{2}+108x+2916. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+54\right)^{2}}=\sqrt{3564}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+54=18\sqrt{11} x+54=-18\sqrt{11}
Whakarūnātia.
x=18\sqrt{11}-54 x=-18\sqrt{11}-54
Me tango 54 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}