Whakaoti mō x
x = \frac{9 \sqrt{3709641} + 1911}{14750} \approx 1.304771899
x=\frac{1911-9\sqrt{3709641}}{14750}\approx -1.045653255
Graph
Tohaina
Kua tāruatia ki te papatopenga
29500x^{2}-7644x=40248
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
29500x^{2}-7644x-40248=40248-40248
Me tango 40248 mai i ngā taha e rua o te whārite.
29500x^{2}-7644x-40248=0
Mā te tango i te 40248 i a ia ake anō ka toe ko te 0.
x=\frac{-\left(-7644\right)±\sqrt{\left(-7644\right)^{2}-4\times 29500\left(-40248\right)}}{2\times 29500}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 29500 mō a, -7644 mō b, me -40248 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7644\right)±\sqrt{58430736-4\times 29500\left(-40248\right)}}{2\times 29500}
Pūrua -7644.
x=\frac{-\left(-7644\right)±\sqrt{58430736-118000\left(-40248\right)}}{2\times 29500}
Whakareatia -4 ki te 29500.
x=\frac{-\left(-7644\right)±\sqrt{58430736+4749264000}}{2\times 29500}
Whakareatia -118000 ki te -40248.
x=\frac{-\left(-7644\right)±\sqrt{4807694736}}{2\times 29500}
Tāpiri 58430736 ki te 4749264000.
x=\frac{-\left(-7644\right)±36\sqrt{3709641}}{2\times 29500}
Tuhia te pūtakerua o te 4807694736.
x=\frac{7644±36\sqrt{3709641}}{2\times 29500}
Ko te tauaro o -7644 ko 7644.
x=\frac{7644±36\sqrt{3709641}}{59000}
Whakareatia 2 ki te 29500.
x=\frac{36\sqrt{3709641}+7644}{59000}
Nā, me whakaoti te whārite x=\frac{7644±36\sqrt{3709641}}{59000} ina he tāpiri te ±. Tāpiri 7644 ki te 36\sqrt{3709641}.
x=\frac{9\sqrt{3709641}+1911}{14750}
Whakawehe 7644+36\sqrt{3709641} ki te 59000.
x=\frac{7644-36\sqrt{3709641}}{59000}
Nā, me whakaoti te whārite x=\frac{7644±36\sqrt{3709641}}{59000} ina he tango te ±. Tango 36\sqrt{3709641} mai i 7644.
x=\frac{1911-9\sqrt{3709641}}{14750}
Whakawehe 7644-36\sqrt{3709641} ki te 59000.
x=\frac{9\sqrt{3709641}+1911}{14750} x=\frac{1911-9\sqrt{3709641}}{14750}
Kua oti te whārite te whakatau.
29500x^{2}-7644x=40248
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{29500x^{2}-7644x}{29500}=\frac{40248}{29500}
Whakawehea ngā taha e rua ki te 29500.
x^{2}+\left(-\frac{7644}{29500}\right)x=\frac{40248}{29500}
Mā te whakawehe ki te 29500 ka wetekia te whakareanga ki te 29500.
x^{2}-\frac{1911}{7375}x=\frac{40248}{29500}
Whakahekea te hautanga \frac{-7644}{29500} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}-\frac{1911}{7375}x=\frac{10062}{7375}
Whakahekea te hautanga \frac{40248}{29500} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}-\frac{1911}{7375}x+\left(-\frac{1911}{14750}\right)^{2}=\frac{10062}{7375}+\left(-\frac{1911}{14750}\right)^{2}
Whakawehea te -\frac{1911}{7375}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1911}{14750}. Nā, tāpiria te pūrua o te -\frac{1911}{14750} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1911}{7375}x+\frac{3651921}{217562500}=\frac{10062}{7375}+\frac{3651921}{217562500}
Pūruatia -\frac{1911}{14750} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1911}{7375}x+\frac{3651921}{217562500}=\frac{300480921}{217562500}
Tāpiri \frac{10062}{7375} ki te \frac{3651921}{217562500} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1911}{14750}\right)^{2}=\frac{300480921}{217562500}
Tauwehea x^{2}-\frac{1911}{7375}x+\frac{3651921}{217562500}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1911}{14750}\right)^{2}}=\sqrt{\frac{300480921}{217562500}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1911}{14750}=\frac{9\sqrt{3709641}}{14750} x-\frac{1911}{14750}=-\frac{9\sqrt{3709641}}{14750}
Whakarūnātia.
x=\frac{9\sqrt{3709641}+1911}{14750} x=\frac{1911-9\sqrt{3709641}}{14750}
Me tāpiri \frac{1911}{14750} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}