Whakaoti mō y
y = \frac{4875}{664} = 7\frac{227}{664} \approx 7.34186747
Graph
Tohaina
Kua tāruatia ki te papatopenga
29.3=\sqrt{1102.24-33.2y}
Whakamahia te āhuatanga tohatoha hei whakarea te 33.2 ki te 33.2-y.
\sqrt{1102.24-33.2y}=29.3
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-33.2y+1102.24=858.49
Pūruatia ngā taha e rua o te whārite.
-33.2y+1102.24-1102.24=858.49-1102.24
Me tango 1102.24 mai i ngā taha e rua o te whārite.
-33.2y=858.49-1102.24
Mā te tango i te 1102.24 i a ia ake anō ka toe ko te 0.
-33.2y=-243.75
Tango 1102.24 mai i 858.49 mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\frac{-33.2y}{-33.2}=-\frac{243.75}{-33.2}
Whakawehea ngā taha e rua o te whārite ki te -33.2, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=-\frac{243.75}{-33.2}
Mā te whakawehe ki te -33.2 ka wetekia te whakareanga ki te -33.2.
y=\frac{4875}{664}
Whakawehe -243.75 ki te -33.2 mā te whakarea -243.75 ki te tau huripoki o -33.2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}