Whakaoti mō x (complex solution)
x=\frac{-4+\sqrt{187}i}{29}\approx -0.137931034+0.471544632i
x=\frac{-\sqrt{187}i-4}{29}\approx -0.137931034-0.471544632i
Graph
Tohaina
Kua tāruatia ki te papatopenga
29x^{2}+8x+7=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-8±\sqrt{8^{2}-4\times 29\times 7}}{2\times 29}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 29 mō a, 8 mō b, me 7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 29\times 7}}{2\times 29}
Pūrua 8.
x=\frac{-8±\sqrt{64-116\times 7}}{2\times 29}
Whakareatia -4 ki te 29.
x=\frac{-8±\sqrt{64-812}}{2\times 29}
Whakareatia -116 ki te 7.
x=\frac{-8±\sqrt{-748}}{2\times 29}
Tāpiri 64 ki te -812.
x=\frac{-8±2\sqrt{187}i}{2\times 29}
Tuhia te pūtakerua o te -748.
x=\frac{-8±2\sqrt{187}i}{58}
Whakareatia 2 ki te 29.
x=\frac{-8+2\sqrt{187}i}{58}
Nā, me whakaoti te whārite x=\frac{-8±2\sqrt{187}i}{58} ina he tāpiri te ±. Tāpiri -8 ki te 2i\sqrt{187}.
x=\frac{-4+\sqrt{187}i}{29}
Whakawehe -8+2i\sqrt{187} ki te 58.
x=\frac{-2\sqrt{187}i-8}{58}
Nā, me whakaoti te whārite x=\frac{-8±2\sqrt{187}i}{58} ina he tango te ±. Tango 2i\sqrt{187} mai i -8.
x=\frac{-\sqrt{187}i-4}{29}
Whakawehe -8-2i\sqrt{187} ki te 58.
x=\frac{-4+\sqrt{187}i}{29} x=\frac{-\sqrt{187}i-4}{29}
Kua oti te whārite te whakatau.
29x^{2}+8x+7=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
29x^{2}+8x+7-7=-7
Me tango 7 mai i ngā taha e rua o te whārite.
29x^{2}+8x=-7
Mā te tango i te 7 i a ia ake anō ka toe ko te 0.
\frac{29x^{2}+8x}{29}=-\frac{7}{29}
Whakawehea ngā taha e rua ki te 29.
x^{2}+\frac{8}{29}x=-\frac{7}{29}
Mā te whakawehe ki te 29 ka wetekia te whakareanga ki te 29.
x^{2}+\frac{8}{29}x+\left(\frac{4}{29}\right)^{2}=-\frac{7}{29}+\left(\frac{4}{29}\right)^{2}
Whakawehea te \frac{8}{29}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{4}{29}. Nā, tāpiria te pūrua o te \frac{4}{29} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{8}{29}x+\frac{16}{841}=-\frac{7}{29}+\frac{16}{841}
Pūruatia \frac{4}{29} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{8}{29}x+\frac{16}{841}=-\frac{187}{841}
Tāpiri -\frac{7}{29} ki te \frac{16}{841} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{4}{29}\right)^{2}=-\frac{187}{841}
Tauwehea x^{2}+\frac{8}{29}x+\frac{16}{841}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{29}\right)^{2}}=\sqrt{-\frac{187}{841}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{4}{29}=\frac{\sqrt{187}i}{29} x+\frac{4}{29}=-\frac{\sqrt{187}i}{29}
Whakarūnātia.
x=\frac{-4+\sqrt{187}i}{29} x=\frac{-\sqrt{187}i-4}{29}
Me tango \frac{4}{29} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}