Aromātai
\frac{2858}{15}\approx 190.533333333
Tauwehe
\frac{2 \cdot 1429}{3 \cdot 5} = 190\frac{8}{15} = 190.53333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{1429}{5}\times \frac{2}{3}
Me tahuri ki tau ā-ira 285.8 ki te hautau \frac{2858}{10}. Whakahekea te hautanga \frac{2858}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1429\times 2}{5\times 3}
Me whakarea te \frac{1429}{5} ki te \frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2858}{15}
Mahia ngā whakarea i roto i te hautanga \frac{1429\times 2}{5\times 3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}