Whakaoti mō x
x=-14
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
28\times 2=x\left(x+10\right)
Me whakarea ngā taha e rua ki te 2.
56=x\left(x+10\right)
Whakareatia te 28 ki te 2, ka 56.
56=x^{2}+10x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+10.
x^{2}+10x=56
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}+10x-56=0
Tangohia te 56 mai i ngā taha e rua.
x=\frac{-10±\sqrt{10^{2}-4\left(-56\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 10 mō b, me -56 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-56\right)}}{2}
Pūrua 10.
x=\frac{-10±\sqrt{100+224}}{2}
Whakareatia -4 ki te -56.
x=\frac{-10±\sqrt{324}}{2}
Tāpiri 100 ki te 224.
x=\frac{-10±18}{2}
Tuhia te pūtakerua o te 324.
x=\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{-10±18}{2} ina he tāpiri te ±. Tāpiri -10 ki te 18.
x=4
Whakawehe 8 ki te 2.
x=-\frac{28}{2}
Nā, me whakaoti te whārite x=\frac{-10±18}{2} ina he tango te ±. Tango 18 mai i -10.
x=-14
Whakawehe -28 ki te 2.
x=4 x=-14
Kua oti te whārite te whakatau.
28\times 2=x\left(x+10\right)
Me whakarea ngā taha e rua ki te 2.
56=x\left(x+10\right)
Whakareatia te 28 ki te 2, ka 56.
56=x^{2}+10x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+10.
x^{2}+10x=56
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}+10x+5^{2}=56+5^{2}
Whakawehea te 10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 5. Nā, tāpiria te pūrua o te 5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+10x+25=56+25
Pūrua 5.
x^{2}+10x+25=81
Tāpiri 56 ki te 25.
\left(x+5\right)^{2}=81
Tauwehea x^{2}+10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{81}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+5=9 x+5=-9
Whakarūnātia.
x=4 x=-14
Me tango 5 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}