Whakaoti mō x (complex solution)
x=\frac{7+\sqrt{71}i}{3}\approx 2.333333333+2.808716591i
x=\frac{-\sqrt{71}i+7}{3}\approx 2.333333333-2.808716591i
Graph
Tohaina
Kua tāruatia ki te papatopenga
-6x^{2}+28x=80
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
-6x^{2}+28x-80=80-80
Me tango 80 mai i ngā taha e rua o te whārite.
-6x^{2}+28x-80=0
Mā te tango i te 80 i a ia ake anō ka toe ko te 0.
x=\frac{-28±\sqrt{28^{2}-4\left(-6\right)\left(-80\right)}}{2\left(-6\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -6 mō a, 28 mō b, me -80 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\left(-6\right)\left(-80\right)}}{2\left(-6\right)}
Pūrua 28.
x=\frac{-28±\sqrt{784+24\left(-80\right)}}{2\left(-6\right)}
Whakareatia -4 ki te -6.
x=\frac{-28±\sqrt{784-1920}}{2\left(-6\right)}
Whakareatia 24 ki te -80.
x=\frac{-28±\sqrt{-1136}}{2\left(-6\right)}
Tāpiri 784 ki te -1920.
x=\frac{-28±4\sqrt{71}i}{2\left(-6\right)}
Tuhia te pūtakerua o te -1136.
x=\frac{-28±4\sqrt{71}i}{-12}
Whakareatia 2 ki te -6.
x=\frac{-28+4\sqrt{71}i}{-12}
Nā, me whakaoti te whārite x=\frac{-28±4\sqrt{71}i}{-12} ina he tāpiri te ±. Tāpiri -28 ki te 4i\sqrt{71}.
x=\frac{-\sqrt{71}i+7}{3}
Whakawehe -28+4i\sqrt{71} ki te -12.
x=\frac{-4\sqrt{71}i-28}{-12}
Nā, me whakaoti te whārite x=\frac{-28±4\sqrt{71}i}{-12} ina he tango te ±. Tango 4i\sqrt{71} mai i -28.
x=\frac{7+\sqrt{71}i}{3}
Whakawehe -28-4i\sqrt{71} ki te -12.
x=\frac{-\sqrt{71}i+7}{3} x=\frac{7+\sqrt{71}i}{3}
Kua oti te whārite te whakatau.
-6x^{2}+28x=80
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-6x^{2}+28x}{-6}=\frac{80}{-6}
Whakawehea ngā taha e rua ki te -6.
x^{2}+\frac{28}{-6}x=\frac{80}{-6}
Mā te whakawehe ki te -6 ka wetekia te whakareanga ki te -6.
x^{2}-\frac{14}{3}x=\frac{80}{-6}
Whakahekea te hautanga \frac{28}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{14}{3}x=-\frac{40}{3}
Whakahekea te hautanga \frac{80}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{14}{3}x+\left(-\frac{7}{3}\right)^{2}=-\frac{40}{3}+\left(-\frac{7}{3}\right)^{2}
Whakawehea te -\frac{14}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{3}. Nā, tāpiria te pūrua o te -\frac{7}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{14}{3}x+\frac{49}{9}=-\frac{40}{3}+\frac{49}{9}
Pūruatia -\frac{7}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{14}{3}x+\frac{49}{9}=-\frac{71}{9}
Tāpiri -\frac{40}{3} ki te \frac{49}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{7}{3}\right)^{2}=-\frac{71}{9}
Tauwehea x^{2}-\frac{14}{3}x+\frac{49}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{3}\right)^{2}}=\sqrt{-\frac{71}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{3}=\frac{\sqrt{71}i}{3} x-\frac{7}{3}=-\frac{\sqrt{71}i}{3}
Whakarūnātia.
x=\frac{7+\sqrt{71}i}{3} x=\frac{-\sqrt{71}i+7}{3}
Me tāpiri \frac{7}{3} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}