Whakaoti mō x
x = \frac{\sqrt{85} + 1}{7} \approx 1.459934922
x=\frac{1-\sqrt{85}}{7}\approx -1.174220637
Graph
Tohaina
Kua tāruatia ki te papatopenga
28x^{2}-8x-48=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 28\left(-48\right)}}{2\times 28}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 28 mō a, -8 mō b, me -48 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 28\left(-48\right)}}{2\times 28}
Pūrua -8.
x=\frac{-\left(-8\right)±\sqrt{64-112\left(-48\right)}}{2\times 28}
Whakareatia -4 ki te 28.
x=\frac{-\left(-8\right)±\sqrt{64+5376}}{2\times 28}
Whakareatia -112 ki te -48.
x=\frac{-\left(-8\right)±\sqrt{5440}}{2\times 28}
Tāpiri 64 ki te 5376.
x=\frac{-\left(-8\right)±8\sqrt{85}}{2\times 28}
Tuhia te pūtakerua o te 5440.
x=\frac{8±8\sqrt{85}}{2\times 28}
Ko te tauaro o -8 ko 8.
x=\frac{8±8\sqrt{85}}{56}
Whakareatia 2 ki te 28.
x=\frac{8\sqrt{85}+8}{56}
Nā, me whakaoti te whārite x=\frac{8±8\sqrt{85}}{56} ina he tāpiri te ±. Tāpiri 8 ki te 8\sqrt{85}.
x=\frac{\sqrt{85}+1}{7}
Whakawehe 8+8\sqrt{85} ki te 56.
x=\frac{8-8\sqrt{85}}{56}
Nā, me whakaoti te whārite x=\frac{8±8\sqrt{85}}{56} ina he tango te ±. Tango 8\sqrt{85} mai i 8.
x=\frac{1-\sqrt{85}}{7}
Whakawehe 8-8\sqrt{85} ki te 56.
x=\frac{\sqrt{85}+1}{7} x=\frac{1-\sqrt{85}}{7}
Kua oti te whārite te whakatau.
28x^{2}-8x-48=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
28x^{2}-8x-48-\left(-48\right)=-\left(-48\right)
Me tāpiri 48 ki ngā taha e rua o te whārite.
28x^{2}-8x=-\left(-48\right)
Mā te tango i te -48 i a ia ake anō ka toe ko te 0.
28x^{2}-8x=48
Tango -48 mai i 0.
\frac{28x^{2}-8x}{28}=\frac{48}{28}
Whakawehea ngā taha e rua ki te 28.
x^{2}+\left(-\frac{8}{28}\right)x=\frac{48}{28}
Mā te whakawehe ki te 28 ka wetekia te whakareanga ki te 28.
x^{2}-\frac{2}{7}x=\frac{48}{28}
Whakahekea te hautanga \frac{-8}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}-\frac{2}{7}x=\frac{12}{7}
Whakahekea te hautanga \frac{48}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}-\frac{2}{7}x+\left(-\frac{1}{7}\right)^{2}=\frac{12}{7}+\left(-\frac{1}{7}\right)^{2}
Whakawehea te -\frac{2}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{7}. Nā, tāpiria te pūrua o te -\frac{1}{7} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{2}{7}x+\frac{1}{49}=\frac{12}{7}+\frac{1}{49}
Pūruatia -\frac{1}{7} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{2}{7}x+\frac{1}{49}=\frac{85}{49}
Tāpiri \frac{12}{7} ki te \frac{1}{49} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{7}\right)^{2}=\frac{85}{49}
Tauwehea x^{2}-\frac{2}{7}x+\frac{1}{49}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{7}\right)^{2}}=\sqrt{\frac{85}{49}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{7}=\frac{\sqrt{85}}{7} x-\frac{1}{7}=-\frac{\sqrt{85}}{7}
Whakarūnātia.
x=\frac{\sqrt{85}+1}{7} x=\frac{1-\sqrt{85}}{7}
Me tāpiri \frac{1}{7} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}