Whakaoti mō x
x = \frac{3105 \sqrt{7}}{14} \approx 586.789844347
x = -\frac{3105 \sqrt{7}}{14} \approx -586.789844347
Graph
Tohaina
Kua tāruatia ki te papatopenga
28x^{2}=9641025
Tātaihia te 3105 mā te pū o 2, kia riro ko 9641025.
x^{2}=\frac{9641025}{28}
Whakawehea ngā taha e rua ki te 28.
x=\frac{3105\sqrt{7}}{14} x=-\frac{3105\sqrt{7}}{14}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
28x^{2}=9641025
Tātaihia te 3105 mā te pū o 2, kia riro ko 9641025.
28x^{2}-9641025=0
Tangohia te 9641025 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 28\left(-9641025\right)}}{2\times 28}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 28 mō a, 0 mō b, me -9641025 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 28\left(-9641025\right)}}{2\times 28}
Pūrua 0.
x=\frac{0±\sqrt{-112\left(-9641025\right)}}{2\times 28}
Whakareatia -4 ki te 28.
x=\frac{0±\sqrt{1079794800}}{2\times 28}
Whakareatia -112 ki te -9641025.
x=\frac{0±12420\sqrt{7}}{2\times 28}
Tuhia te pūtakerua o te 1079794800.
x=\frac{0±12420\sqrt{7}}{56}
Whakareatia 2 ki te 28.
x=\frac{3105\sqrt{7}}{14}
Nā, me whakaoti te whārite x=\frac{0±12420\sqrt{7}}{56} ina he tāpiri te ±.
x=-\frac{3105\sqrt{7}}{14}
Nā, me whakaoti te whārite x=\frac{0±12420\sqrt{7}}{56} ina he tango te ±.
x=\frac{3105\sqrt{7}}{14} x=-\frac{3105\sqrt{7}}{14}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}