Tauwehe
\left(4x-1\right)\left(7x+2\right)
Aromātai
28x^{2}+x-2
Graph
Pātaitai
Polynomial
28 x ^ { 2 } + x - 2
Tohaina
Kua tāruatia ki te papatopenga
a+b=1 ab=28\left(-2\right)=-56
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 28x^{2}+ax+bx-2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,56 -2,28 -4,14 -7,8
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -56.
-1+56=55 -2+28=26 -4+14=10 -7+8=1
Tātaihia te tapeke mō ia takirua.
a=-7 b=8
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(28x^{2}-7x\right)+\left(8x-2\right)
Tuhia anō te 28x^{2}+x-2 hei \left(28x^{2}-7x\right)+\left(8x-2\right).
7x\left(4x-1\right)+2\left(4x-1\right)
Tauwehea te 7x i te tuatahi me te 2 i te rōpū tuarua.
\left(4x-1\right)\left(7x+2\right)
Whakatauwehea atu te kīanga pātahi 4x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
28x^{2}+x-2=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\times 28\left(-2\right)}}{2\times 28}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1-4\times 28\left(-2\right)}}{2\times 28}
Pūrua 1.
x=\frac{-1±\sqrt{1-112\left(-2\right)}}{2\times 28}
Whakareatia -4 ki te 28.
x=\frac{-1±\sqrt{1+224}}{2\times 28}
Whakareatia -112 ki te -2.
x=\frac{-1±\sqrt{225}}{2\times 28}
Tāpiri 1 ki te 224.
x=\frac{-1±15}{2\times 28}
Tuhia te pūtakerua o te 225.
x=\frac{-1±15}{56}
Whakareatia 2 ki te 28.
x=\frac{14}{56}
Nā, me whakaoti te whārite x=\frac{-1±15}{56} ina he tāpiri te ±. Tāpiri -1 ki te 15.
x=\frac{1}{4}
Whakahekea te hautanga \frac{14}{56} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
x=-\frac{16}{56}
Nā, me whakaoti te whārite x=\frac{-1±15}{56} ina he tango te ±. Tango 15 mai i -1.
x=-\frac{2}{7}
Whakahekea te hautanga \frac{-16}{56} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
28x^{2}+x-2=28\left(x-\frac{1}{4}\right)\left(x-\left(-\frac{2}{7}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1}{4} mō te x_{1} me te -\frac{2}{7} mō te x_{2}.
28x^{2}+x-2=28\left(x-\frac{1}{4}\right)\left(x+\frac{2}{7}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
28x^{2}+x-2=28\times \frac{4x-1}{4}\left(x+\frac{2}{7}\right)
Tango \frac{1}{4} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
28x^{2}+x-2=28\times \frac{4x-1}{4}\times \frac{7x+2}{7}
Tāpiri \frac{2}{7} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
28x^{2}+x-2=28\times \frac{\left(4x-1\right)\left(7x+2\right)}{4\times 7}
Whakareatia \frac{4x-1}{4} ki te \frac{7x+2}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
28x^{2}+x-2=28\times \frac{\left(4x-1\right)\left(7x+2\right)}{28}
Whakareatia 4 ki te 7.
28x^{2}+x-2=\left(4x-1\right)\left(7x+2\right)
Whakakorea atu te tauwehe pūnoa nui rawa 28 i roto i te 28 me te 28.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}