Whakaoti mō r
r = \frac{10}{7} = 1\frac{3}{7} \approx 1.428571429
Whakaoti mō r (complex solution)
r=-\frac{1}{2}i=-0.5i
r = \frac{10}{7} = 1\frac{3}{7} \approx 1.428571429
r=\frac{1}{2}i=0.5i
Tohaina
Kua tāruatia ki te papatopenga
28r^{3}+7r-40r^{2}=10
Tangohia te 40r^{2} mai i ngā taha e rua.
28r^{3}+7r-40r^{2}-10=0
Tangohia te 10 mai i ngā taha e rua.
28r^{3}-40r^{2}+7r-10=0
Hurinahatia te whārite ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
±\frac{5}{14},±\frac{5}{7},±\frac{10}{7},±\frac{5}{2},±5,±10,±\frac{5}{28},±\frac{5}{4},±\frac{1}{14},±\frac{1}{7},±\frac{2}{7},±\frac{1}{2},±1,±2,±\frac{1}{28},±\frac{1}{4}
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -10, ā, ka wehea e q te whakarea arahanga 28. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
r=\frac{10}{7}
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
4r^{2}+1=0
Mā te whakatakotoranga Tauwehe, he tauwehe te r-k o te pūrau mō ia pūtake k. Whakawehea te 28r^{3}-40r^{2}+7r-10 ki te 7\left(r-\frac{10}{7}\right)=7r-10, kia riro ko 4r^{2}+1. Whakaotihia te whārite ina ōrite te hua ki te 0.
r=\frac{0±\sqrt{0^{2}-4\times 4\times 1}}{2\times 4}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 4 mō te a, te 0 mō te b, me te 1 mō te c i te ture pūrua.
r=\frac{0±\sqrt{-16}}{8}
Mahia ngā tātaitai.
r\in \emptyset
Tā te mea e kore te pūrua o tētahi tau tōraro e tautohutia ki te āpure tūturu, kāhore he rongoā.
r=\frac{10}{7}
Rārangitia ngā otinga katoa i kitea.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}