Whakaoti mō x
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
278x-834-463\left(6-2x\right)-888\left(7x-21\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te 278 ki te x-3.
278x-834-2778+926x-888\left(7x-21\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te -463 ki te 6-2x.
278x-3612+926x-888\left(7x-21\right)=0
Tangohia te 2778 i te -834, ka -3612.
1204x-3612-888\left(7x-21\right)=0
Pahekotia te 278x me 926x, ka 1204x.
1204x-3612-6216x+18648=0
Whakamahia te āhuatanga tohatoha hei whakarea te -888 ki te 7x-21.
-5012x-3612+18648=0
Pahekotia te 1204x me -6216x, ka -5012x.
-5012x+15036=0
Tāpirihia te -3612 ki te 18648, ka 15036.
-5012x=-15036
Tangohia te 15036 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=\frac{-15036}{-5012}
Whakawehea ngā taha e rua ki te -5012.
x=3
Whakawehea te -15036 ki te -5012, kia riro ko 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}