Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{276}{4}=\frac{1\times 2+1}{2}\times \frac{3}{4}t+\frac{3}{4}t+t
Whakawehea ngā taha e rua ki te 4.
69=\frac{1\times 2+1}{2}\times \frac{3}{4}t+\frac{3}{4}t+t
Whakawehea te 276 ki te 4, kia riro ko 69.
276=2\left(1\times 2+1\right)\times \frac{3}{4}t+3t+4t
Me whakarea ngā taha e rua o te whārite ki te 4, arā, te tauraro pātahi he tino iti rawa te kitea o 2,4.
276=2\left(2+1\right)\times \frac{3}{4}t+3t+4t
Whakareatia te 1 ki te 2, ka 2.
276=2\times 3\times \frac{3}{4}t+3t+4t
Tāpirihia te 2 ki te 1, ka 3.
276=6\times \frac{3}{4}t+3t+4t
Whakareatia te 2 ki te 3, ka 6.
276=\frac{6\times 3}{4}t+3t+4t
Tuhia te 6\times \frac{3}{4} hei hautanga kotahi.
276=\frac{18}{4}t+3t+4t
Whakareatia te 6 ki te 3, ka 18.
276=\frac{9}{2}t+3t+4t
Whakahekea te hautanga \frac{18}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
276=\frac{15}{2}t+4t
Pahekotia te \frac{9}{2}t me 3t, ka \frac{15}{2}t.
276=\frac{23}{2}t
Pahekotia te \frac{15}{2}t me 4t, ka \frac{23}{2}t.
\frac{23}{2}t=276
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
t=276\times \frac{2}{23}
Me whakarea ngā taha e rua ki te \frac{2}{23}, te tau utu o \frac{23}{2}.
t=\frac{276\times 2}{23}
Tuhia te 276\times \frac{2}{23} hei hautanga kotahi.
t=\frac{552}{23}
Whakareatia te 276 ki te 2, ka 552.
t=24
Whakawehea te 552 ki te 23, kia riro ko 24.