Whakaoti mō h
h=\frac{100\ln(3)-100\ln(2)}{19}\approx 2.134026885
Whakaoti mō h (complex solution)
h=\frac{i\times 200\pi n_{1}}{19}+\frac{100\ln(3)}{19}-\frac{100\ln(2)}{19}
n_{1}\in \mathrm{Z}
Tohaina
Kua tāruatia ki te papatopenga
\frac{2700}{1800}=e^{0.19h}
Whakawehea ngā taha e rua ki te 1800.
\frac{3}{2}=e^{0.19h}
Whakahekea te hautanga \frac{2700}{1800} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 900.
e^{0.19h}=\frac{3}{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\log(e^{0.19h})=\log(\frac{3}{2})
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
0.19h\log(e)=\log(\frac{3}{2})
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
0.19h=\frac{\log(\frac{3}{2})}{\log(e)}
Whakawehea ngā taha e rua ki te \log(e).
0.19h=\log_{e}\left(\frac{3}{2}\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
h=\frac{\ln(\frac{3}{2})}{0.19}
Whakawehea ngā taha e rua o te whārite ki te 0.19, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}