Aromātai
6x^{3}
Kimi Pārōnaki e ai ki x
18x^{2}
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
27 x ^ { 4 } : ( - 9 x ^ { 3 } ) \cdot ( - 2 x ^ { 2 } ) =
Tohaina
Kua tāruatia ki te papatopenga
\frac{3x}{-1}\left(-2\right)x^{2}
Me whakakore tahi te 9x^{3} i te taurunga me te tauraro.
-3x\left(-2\right)x^{2}
Ko te mea whakawehea ki te -1 ka hōmai i tōna kōaro.
6xx^{2}
Whakareatia te -3 ki te -2, ka 6.
6x^{3}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x}{-1}\left(-2\right)x^{2})
Me whakakore tahi te 9x^{3} i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(-3x\left(-2\right)x^{2})
Ko te mea whakawehea ki te -1 ka hōmai i tōna kōaro.
\frac{\mathrm{d}}{\mathrm{d}x}(6xx^{2})
Whakareatia te -3 ki te -2, ka 6.
\frac{\mathrm{d}}{\mathrm{d}x}(6x^{3})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
3\times 6x^{3-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
18x^{3-1}
Whakareatia 3 ki te 6.
18x^{2}
Tango 1 mai i 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}