Tauwehe
\left(3-5a\right)^{3}
Aromātai
\left(3-5a\right)^{3}
Tohaina
Kua tāruatia ki te papatopenga
\left(5a-3\right)\left(-25a^{2}+30a-9\right)
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 27, ā, ka wehea e q te whakarea arahanga -125. Ko tetahi pūtake pērā ko \frac{3}{5}. Tauwehea te pūrau mā te whakawehe mā te 5a-3.
p+q=30 pq=-25\left(-9\right)=225
Whakaarohia te -25a^{2}+30a-9. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -25a^{2}+pa+qa-9. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
1,225 3,75 5,45 9,25 15,15
I te mea kua tōrunga te pq, he ōrite te tohu o p me q. I te mea kua tōrunga te p+q, he tōrunga hoki a p me q. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 225.
1+225=226 3+75=78 5+45=50 9+25=34 15+15=30
Tātaihia te tapeke mō ia takirua.
p=15 q=15
Ko te otinga te takirua ka hoatu i te tapeke 30.
\left(-25a^{2}+15a\right)+\left(15a-9\right)
Tuhia anō te -25a^{2}+30a-9 hei \left(-25a^{2}+15a\right)+\left(15a-9\right).
-5a\left(5a-3\right)+3\left(5a-3\right)
Tauwehea te -5a i te tuatahi me te 3 i te rōpū tuarua.
\left(5a-3\right)\left(-5a+3\right)
Whakatauwehea atu te kīanga pātahi 5a-3 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(-5a+3\right)\left(5a-3\right)^{2}
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}