Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

27x^{2}+5.9x-21=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-5.9±\sqrt{5.9^{2}-4\times 27\left(-21\right)}}{2\times 27}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 27 mō a, 5.9 mō b, me -21 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5.9±\sqrt{34.81-4\times 27\left(-21\right)}}{2\times 27}
Pūruatia 5.9 mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-5.9±\sqrt{34.81-108\left(-21\right)}}{2\times 27}
Whakareatia -4 ki te 27.
x=\frac{-5.9±\sqrt{34.81+2268}}{2\times 27}
Whakareatia -108 ki te -21.
x=\frac{-5.9±\sqrt{2302.81}}{2\times 27}
Tāpiri 34.81 ki te 2268.
x=\frac{-5.9±\frac{\sqrt{230281}}{10}}{2\times 27}
Tuhia te pūtakerua o te 2302.81.
x=\frac{-5.9±\frac{\sqrt{230281}}{10}}{54}
Whakareatia 2 ki te 27.
x=\frac{\sqrt{230281}-59}{10\times 54}
Nā, me whakaoti te whārite x=\frac{-5.9±\frac{\sqrt{230281}}{10}}{54} ina he tāpiri te ±. Tāpiri -5.9 ki te \frac{\sqrt{230281}}{10}.
x=\frac{\sqrt{230281}-59}{540}
Whakawehe \frac{-59+\sqrt{230281}}{10} ki te 54.
x=\frac{-\sqrt{230281}-59}{10\times 54}
Nā, me whakaoti te whārite x=\frac{-5.9±\frac{\sqrt{230281}}{10}}{54} ina he tango te ±. Tango \frac{\sqrt{230281}}{10} mai i -5.9.
x=\frac{-\sqrt{230281}-59}{540}
Whakawehe \frac{-59-\sqrt{230281}}{10} ki te 54.
x=\frac{\sqrt{230281}-59}{540} x=\frac{-\sqrt{230281}-59}{540}
Kua oti te whārite te whakatau.
27x^{2}+5.9x-21=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
27x^{2}+5.9x-21-\left(-21\right)=-\left(-21\right)
Me tāpiri 21 ki ngā taha e rua o te whārite.
27x^{2}+5.9x=-\left(-21\right)
Mā te tango i te -21 i a ia ake anō ka toe ko te 0.
27x^{2}+5.9x=21
Tango -21 mai i 0.
\frac{27x^{2}+5.9x}{27}=\frac{21}{27}
Whakawehea ngā taha e rua ki te 27.
x^{2}+\frac{5.9}{27}x=\frac{21}{27}
Mā te whakawehe ki te 27 ka wetekia te whakareanga ki te 27.
x^{2}+\frac{59}{270}x=\frac{21}{27}
Whakawehe 5.9 ki te 27.
x^{2}+\frac{59}{270}x=\frac{7}{9}
Whakahekea te hautanga \frac{21}{27} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{59}{270}x+\frac{59}{540}^{2}=\frac{7}{9}+\frac{59}{540}^{2}
Whakawehea te \frac{59}{270}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{59}{540}. Nā, tāpiria te pūrua o te \frac{59}{540} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{59}{270}x+\frac{3481}{291600}=\frac{7}{9}+\frac{3481}{291600}
Pūruatia \frac{59}{540} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{59}{270}x+\frac{3481}{291600}=\frac{230281}{291600}
Tāpiri \frac{7}{9} ki te \frac{3481}{291600} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{59}{540}\right)^{2}=\frac{230281}{291600}
Tauwehea x^{2}+\frac{59}{270}x+\frac{3481}{291600}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{59}{540}\right)^{2}}=\sqrt{\frac{230281}{291600}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{59}{540}=\frac{\sqrt{230281}}{540} x+\frac{59}{540}=-\frac{\sqrt{230281}}{540}
Whakarūnātia.
x=\frac{\sqrt{230281}-59}{540} x=\frac{-\sqrt{230281}-59}{540}
Me tango \frac{59}{540} mai i ngā taha e rua o te whārite.