Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

27x^{2}+33x-120=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-33±\sqrt{33^{2}-4\times 27\left(-120\right)}}{2\times 27}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 27 mō a, 33 mō b, me -120 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-33±\sqrt{1089-4\times 27\left(-120\right)}}{2\times 27}
Pūrua 33.
x=\frac{-33±\sqrt{1089-108\left(-120\right)}}{2\times 27}
Whakareatia -4 ki te 27.
x=\frac{-33±\sqrt{1089+12960}}{2\times 27}
Whakareatia -108 ki te -120.
x=\frac{-33±\sqrt{14049}}{2\times 27}
Tāpiri 1089 ki te 12960.
x=\frac{-33±3\sqrt{1561}}{2\times 27}
Tuhia te pūtakerua o te 14049.
x=\frac{-33±3\sqrt{1561}}{54}
Whakareatia 2 ki te 27.
x=\frac{3\sqrt{1561}-33}{54}
Nā, me whakaoti te whārite x=\frac{-33±3\sqrt{1561}}{54} ina he tāpiri te ±. Tāpiri -33 ki te 3\sqrt{1561}.
x=\frac{\sqrt{1561}-11}{18}
Whakawehe -33+3\sqrt{1561} ki te 54.
x=\frac{-3\sqrt{1561}-33}{54}
Nā, me whakaoti te whārite x=\frac{-33±3\sqrt{1561}}{54} ina he tango te ±. Tango 3\sqrt{1561} mai i -33.
x=\frac{-\sqrt{1561}-11}{18}
Whakawehe -33-3\sqrt{1561} ki te 54.
x=\frac{\sqrt{1561}-11}{18} x=\frac{-\sqrt{1561}-11}{18}
Kua oti te whārite te whakatau.
27x^{2}+33x-120=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
27x^{2}+33x-120-\left(-120\right)=-\left(-120\right)
Me tāpiri 120 ki ngā taha e rua o te whārite.
27x^{2}+33x=-\left(-120\right)
Mā te tango i te -120 i a ia ake anō ka toe ko te 0.
27x^{2}+33x=120
Tango -120 mai i 0.
\frac{27x^{2}+33x}{27}=\frac{120}{27}
Whakawehea ngā taha e rua ki te 27.
x^{2}+\frac{33}{27}x=\frac{120}{27}
Mā te whakawehe ki te 27 ka wetekia te whakareanga ki te 27.
x^{2}+\frac{11}{9}x=\frac{120}{27}
Whakahekea te hautanga \frac{33}{27} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{11}{9}x=\frac{40}{9}
Whakahekea te hautanga \frac{120}{27} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{11}{9}x+\left(\frac{11}{18}\right)^{2}=\frac{40}{9}+\left(\frac{11}{18}\right)^{2}
Whakawehea te \frac{11}{9}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{11}{18}. Nā, tāpiria te pūrua o te \frac{11}{18} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{11}{9}x+\frac{121}{324}=\frac{40}{9}+\frac{121}{324}
Pūruatia \frac{11}{18} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{11}{9}x+\frac{121}{324}=\frac{1561}{324}
Tāpiri \frac{40}{9} ki te \frac{121}{324} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{11}{18}\right)^{2}=\frac{1561}{324}
Tauwehea x^{2}+\frac{11}{9}x+\frac{121}{324}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{18}\right)^{2}}=\sqrt{\frac{1561}{324}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{11}{18}=\frac{\sqrt{1561}}{18} x+\frac{11}{18}=-\frac{\sqrt{1561}}{18}
Whakarūnātia.
x=\frac{\sqrt{1561}-11}{18} x=\frac{-\sqrt{1561}-11}{18}
Me tango \frac{11}{18} mai i ngā taha e rua o te whārite.