Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
27\times 21+\frac{1}{21}+21=462
Tuhia anō te 21^{2} hei 21\times 21. Me whakakore tahi te 21 i te taurunga me te tauraro.
567+\frac{1}{21}+21=462
Whakareatia te 27 ki te 21, ka 567.
\frac{11907}{21}+\frac{1}{21}+21=462
Me tahuri te 567 ki te hautau \frac{11907}{21}.
\frac{11907+1}{21}+21=462
Tā te mea he rite te tauraro o \frac{11907}{21} me \frac{1}{21}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{11908}{21}+21=462
Tāpirihia te 11907 ki te 1, ka 11908.
\frac{11908}{21}+\frac{441}{21}=462
Me tahuri te 21 ki te hautau \frac{441}{21}.
\frac{11908+441}{21}=462
Tā te mea he rite te tauraro o \frac{11908}{21} me \frac{441}{21}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{12349}{21}=462
Tāpirihia te 11908 ki te 441, ka 12349.
\frac{12349}{21}=\frac{9702}{21}
Me tahuri te 462 ki te hautau \frac{9702}{21}.
\text{false}
Whakatauritea te \frac{12349}{21} me te \frac{9702}{21}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}