Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

27^{\frac{4}{3}}+\frac{\sqrt{243}\times \frac{4}{5}}{\left(\sqrt{125}\right)^{1}}
Whakawehea te 9 ki te 9, kia riro ko 1.
81+\frac{\sqrt{243}\times \frac{4}{5}}{\left(\sqrt{125}\right)^{1}}
Tātaihia te 27 mā te pū o \frac{4}{3}, kia riro ko 81.
81+\frac{9\sqrt{3}\times \frac{4}{5}}{\left(\sqrt{125}\right)^{1}}
Tauwehea te 243=9^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{9^{2}\times 3} hei hua o ngā pūtake rua \sqrt{9^{2}}\sqrt{3}. Tuhia te pūtakerua o te 9^{2}.
81+\frac{\frac{36}{5}\sqrt{3}}{\left(\sqrt{125}\right)^{1}}
Whakareatia te 9 ki te \frac{4}{5}, ka \frac{36}{5}.
81+\frac{\frac{36}{5}\sqrt{3}}{\sqrt{125}}
Tātaihia te \sqrt{125} mā te pū o 1, kia riro ko \sqrt{125}.
81+\frac{\frac{36}{5}\sqrt{3}\sqrt{125}}{\left(\sqrt{125}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\frac{36}{5}\sqrt{3}}{\sqrt{125}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{125}.
81+\frac{\frac{36}{5}\sqrt{3}\sqrt{125}}{125}
Ko te pūrua o \sqrt{125} ko 125.
81+\frac{\frac{36}{5}\sqrt{3}\times 5\sqrt{5}}{125}
Tauwehea te 125=5^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 5} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{5}. Tuhia te pūtakerua o te 5^{2}.
81+\frac{36\sqrt{3}\sqrt{5}}{125}
Whakareatia te \frac{36}{5} ki te 5, ka 36.
81+\frac{36\sqrt{15}}{125}
Hei whakarea \sqrt{3} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{81\times 125}{125}+\frac{36\sqrt{15}}{125}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 81 ki te \frac{125}{125}.
\frac{81\times 125+36\sqrt{15}}{125}
Tā te mea he rite te tauraro o \frac{81\times 125}{125} me \frac{36\sqrt{15}}{125}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{10125+36\sqrt{15}}{125}
Mahia ngā whakarea i roto o 81\times 125+36\sqrt{15}.