Whakaoti mō y
y=\frac{x}{3}+\frac{10}{x}
x\neq 0
Whakaoti mō x (complex solution)
x=\frac{-\sqrt{9y^{2}-120}+3y}{2}
x=\frac{\sqrt{9y^{2}-120}+3y}{2}
Whakaoti mō x
x=\frac{-\sqrt{9y^{2}-120}+3y}{2}
x=\frac{\sqrt{9y^{2}-120}+3y}{2}\text{, }|y|\geq \frac{2\sqrt{30}}{3}
Graph
Pātaitai
Algebra
27 = x ( 3 y - x ) - 3
Tohaina
Kua tāruatia ki te papatopenga
27=3xy-x^{2}-3
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 3y-x.
3xy-x^{2}-3=27
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3xy-3=27+x^{2}
Me tāpiri te x^{2} ki ngā taha e rua.
3xy=27+x^{2}+3
Me tāpiri te 3 ki ngā taha e rua.
3xy=30+x^{2}
Tāpirihia te 27 ki te 3, ka 30.
3xy=x^{2}+30
He hanga arowhānui tō te whārite.
\frac{3xy}{3x}=\frac{x^{2}+30}{3x}
Whakawehea ngā taha e rua ki te 3x.
y=\frac{x^{2}+30}{3x}
Mā te whakawehe ki te 3x ka wetekia te whakareanga ki te 3x.
y=\frac{x}{3}+\frac{10}{x}
Whakawehe 30+x^{2} ki te 3x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}