Tauwehe
-\left(5x-9\right)\left(5x+3\right)
Aromātai
27+30x-25x^{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
-25x^{2}+30x+27
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=30 ab=-25\times 27=-675
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -25x^{2}+ax+bx+27. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,675 -3,225 -5,135 -9,75 -15,45 -25,27
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -675.
-1+675=674 -3+225=222 -5+135=130 -9+75=66 -15+45=30 -25+27=2
Tātaihia te tapeke mō ia takirua.
a=45 b=-15
Ko te otinga te takirua ka hoatu i te tapeke 30.
\left(-25x^{2}+45x\right)+\left(-15x+27\right)
Tuhia anō te -25x^{2}+30x+27 hei \left(-25x^{2}+45x\right)+\left(-15x+27\right).
-5x\left(5x-9\right)-3\left(5x-9\right)
Tauwehea te -5x i te tuatahi me te -3 i te rōpū tuarua.
\left(5x-9\right)\left(-5x-3\right)
Whakatauwehea atu te kīanga pātahi 5x-9 mā te whakamahi i te āhuatanga tātai tohatoha.
-25x^{2}+30x+27=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-30±\sqrt{30^{2}-4\left(-25\right)\times 27}}{2\left(-25\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-30±\sqrt{900-4\left(-25\right)\times 27}}{2\left(-25\right)}
Pūrua 30.
x=\frac{-30±\sqrt{900+100\times 27}}{2\left(-25\right)}
Whakareatia -4 ki te -25.
x=\frac{-30±\sqrt{900+2700}}{2\left(-25\right)}
Whakareatia 100 ki te 27.
x=\frac{-30±\sqrt{3600}}{2\left(-25\right)}
Tāpiri 900 ki te 2700.
x=\frac{-30±60}{2\left(-25\right)}
Tuhia te pūtakerua o te 3600.
x=\frac{-30±60}{-50}
Whakareatia 2 ki te -25.
x=\frac{30}{-50}
Nā, me whakaoti te whārite x=\frac{-30±60}{-50} ina he tāpiri te ±. Tāpiri -30 ki te 60.
x=-\frac{3}{5}
Whakahekea te hautanga \frac{30}{-50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x=-\frac{90}{-50}
Nā, me whakaoti te whārite x=\frac{-30±60}{-50} ina he tango te ±. Tango 60 mai i -30.
x=\frac{9}{5}
Whakahekea te hautanga \frac{-90}{-50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
-25x^{2}+30x+27=-25\left(x-\left(-\frac{3}{5}\right)\right)\left(x-\frac{9}{5}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{3}{5} mō te x_{1} me te \frac{9}{5} mō te x_{2}.
-25x^{2}+30x+27=-25\left(x+\frac{3}{5}\right)\left(x-\frac{9}{5}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
-25x^{2}+30x+27=-25\times \frac{-5x-3}{-5}\left(x-\frac{9}{5}\right)
Tāpiri \frac{3}{5} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-25x^{2}+30x+27=-25\times \frac{-5x-3}{-5}\times \frac{-5x+9}{-5}
Tango \frac{9}{5} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-25x^{2}+30x+27=-25\times \frac{\left(-5x-3\right)\left(-5x+9\right)}{-5\left(-5\right)}
Whakareatia \frac{-5x-3}{-5} ki te \frac{-5x+9}{-5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-25x^{2}+30x+27=-25\times \frac{\left(-5x-3\right)\left(-5x+9\right)}{25}
Whakareatia -5 ki te -5.
-25x^{2}+30x+27=-\left(-5x-3\right)\left(-5x+9\right)
Whakakorea atu te tauwehe pūnoa nui rawa 25 i roto i te -25 me te 25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}