Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y^{2}=\frac{48}{26}
Whakawehea ngā taha e rua ki te 26.
y^{2}=\frac{24}{13}
Whakahekea te hautanga \frac{48}{26} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
y=\frac{2\sqrt{78}}{13} y=-\frac{2\sqrt{78}}{13}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y^{2}=\frac{48}{26}
Whakawehea ngā taha e rua ki te 26.
y^{2}=\frac{24}{13}
Whakahekea te hautanga \frac{48}{26} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
y^{2}-\frac{24}{13}=0
Tangohia te \frac{24}{13} mai i ngā taha e rua.
y=\frac{0±\sqrt{0^{2}-4\left(-\frac{24}{13}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{24}{13} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\left(-\frac{24}{13}\right)}}{2}
Pūrua 0.
y=\frac{0±\sqrt{\frac{96}{13}}}{2}
Whakareatia -4 ki te -\frac{24}{13}.
y=\frac{0±\frac{4\sqrt{78}}{13}}{2}
Tuhia te pūtakerua o te \frac{96}{13}.
y=\frac{2\sqrt{78}}{13}
Nā, me whakaoti te whārite y=\frac{0±\frac{4\sqrt{78}}{13}}{2} ina he tāpiri te ±.
y=-\frac{2\sqrt{78}}{13}
Nā, me whakaoti te whārite y=\frac{0±\frac{4\sqrt{78}}{13}}{2} ina he tango te ±.
y=\frac{2\sqrt{78}}{13} y=-\frac{2\sqrt{78}}{13}
Kua oti te whārite te whakatau.