Whakaoti mō x
x=-24
x=10
Graph
Tohaina
Kua tāruatia ki te papatopenga
676=x^{2}+\left(x+14\right)^{2}
Tātaihia te 26 mā te pū o 2, kia riro ko 676.
676=x^{2}+x^{2}+28x+196
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+14\right)^{2}.
676=2x^{2}+28x+196
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+28x+196=676
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2x^{2}+28x+196-676=0
Tangohia te 676 mai i ngā taha e rua.
2x^{2}+28x-480=0
Tangohia te 676 i te 196, ka -480.
x^{2}+14x-240=0
Whakawehea ngā taha e rua ki te 2.
a+b=14 ab=1\left(-240\right)=-240
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-240. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,240 -2,120 -3,80 -4,60 -5,48 -6,40 -8,30 -10,24 -12,20 -15,16
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -240.
-1+240=239 -2+120=118 -3+80=77 -4+60=56 -5+48=43 -6+40=34 -8+30=22 -10+24=14 -12+20=8 -15+16=1
Tātaihia te tapeke mō ia takirua.
a=-10 b=24
Ko te otinga te takirua ka hoatu i te tapeke 14.
\left(x^{2}-10x\right)+\left(24x-240\right)
Tuhia anō te x^{2}+14x-240 hei \left(x^{2}-10x\right)+\left(24x-240\right).
x\left(x-10\right)+24\left(x-10\right)
Tauwehea te x i te tuatahi me te 24 i te rōpū tuarua.
\left(x-10\right)\left(x+24\right)
Whakatauwehea atu te kīanga pātahi x-10 mā te whakamahi i te āhuatanga tātai tohatoha.
x=10 x=-24
Hei kimi otinga whārite, me whakaoti te x-10=0 me te x+24=0.
676=x^{2}+\left(x+14\right)^{2}
Tātaihia te 26 mā te pū o 2, kia riro ko 676.
676=x^{2}+x^{2}+28x+196
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+14\right)^{2}.
676=2x^{2}+28x+196
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+28x+196=676
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2x^{2}+28x+196-676=0
Tangohia te 676 mai i ngā taha e rua.
2x^{2}+28x-480=0
Tangohia te 676 i te 196, ka -480.
x=\frac{-28±\sqrt{28^{2}-4\times 2\left(-480\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 28 mō b, me -480 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\times 2\left(-480\right)}}{2\times 2}
Pūrua 28.
x=\frac{-28±\sqrt{784-8\left(-480\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-28±\sqrt{784+3840}}{2\times 2}
Whakareatia -8 ki te -480.
x=\frac{-28±\sqrt{4624}}{2\times 2}
Tāpiri 784 ki te 3840.
x=\frac{-28±68}{2\times 2}
Tuhia te pūtakerua o te 4624.
x=\frac{-28±68}{4}
Whakareatia 2 ki te 2.
x=\frac{40}{4}
Nā, me whakaoti te whārite x=\frac{-28±68}{4} ina he tāpiri te ±. Tāpiri -28 ki te 68.
x=10
Whakawehe 40 ki te 4.
x=-\frac{96}{4}
Nā, me whakaoti te whārite x=\frac{-28±68}{4} ina he tango te ±. Tango 68 mai i -28.
x=-24
Whakawehe -96 ki te 4.
x=10 x=-24
Kua oti te whārite te whakatau.
676=x^{2}+\left(x+14\right)^{2}
Tātaihia te 26 mā te pū o 2, kia riro ko 676.
676=x^{2}+x^{2}+28x+196
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+14\right)^{2}.
676=2x^{2}+28x+196
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+28x+196=676
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2x^{2}+28x=676-196
Tangohia te 196 mai i ngā taha e rua.
2x^{2}+28x=480
Tangohia te 196 i te 676, ka 480.
\frac{2x^{2}+28x}{2}=\frac{480}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{28}{2}x=\frac{480}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+14x=\frac{480}{2}
Whakawehe 28 ki te 2.
x^{2}+14x=240
Whakawehe 480 ki te 2.
x^{2}+14x+7^{2}=240+7^{2}
Whakawehea te 14, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 7. Nā, tāpiria te pūrua o te 7 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+14x+49=240+49
Pūrua 7.
x^{2}+14x+49=289
Tāpiri 240 ki te 49.
\left(x+7\right)^{2}=289
Tauwehea x^{2}+14x+49. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+7\right)^{2}}=\sqrt{289}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+7=17 x+7=-17
Whakarūnātia.
x=10 x=-24
Me tango 7 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}