Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(25x\right)^{2}=\left(\sqrt{49x^{2}+48^{2}}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
25^{2}x^{2}=\left(\sqrt{49x^{2}+48^{2}}\right)^{2}
Whakarohaina te \left(25x\right)^{2}.
625x^{2}=\left(\sqrt{49x^{2}+48^{2}}\right)^{2}
Tātaihia te 25 mā te pū o 2, kia riro ko 625.
625x^{2}=\left(\sqrt{49x^{2}+2304}\right)^{2}
Tātaihia te 48 mā te pū o 2, kia riro ko 2304.
625x^{2}=49x^{2}+2304
Tātaihia te \sqrt{49x^{2}+2304} mā te pū o 2, kia riro ko 49x^{2}+2304.
625x^{2}-49x^{2}=2304
Tangohia te 49x^{2} mai i ngā taha e rua.
576x^{2}=2304
Pahekotia te 625x^{2} me -49x^{2}, ka 576x^{2}.
576x^{2}-2304=0
Tangohia te 2304 mai i ngā taha e rua.
x^{2}-4=0
Whakawehea ngā taha e rua ki te 576.
\left(x-2\right)\left(x+2\right)=0
Whakaarohia te x^{2}-4. Tuhia anō te x^{2}-4 hei x^{2}-2^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=2 x=-2
Hei kimi otinga whārite, me whakaoti te x-2=0 me te x+2=0.
25\times 2=\sqrt{49\times 2^{2}+48^{2}}
Whakakapia te 2 mō te x i te whārite 25x=\sqrt{49x^{2}+48^{2}}.
50=50
Whakarūnātia. Ko te uara x=2 kua ngata te whārite.
25\left(-2\right)=\sqrt{49\left(-2\right)^{2}+48^{2}}
Whakakapia te -2 mō te x i te whārite 25x=\sqrt{49x^{2}+48^{2}}.
-50=50
Whakarūnātia. Ko te uara x=-2 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=2
Ko te whārite 25x=\sqrt{49x^{2}+2304} he rongoā ahurei.