258( \sqrt{ \frac{ 65 \times 35 }{ 2000 } }
Aromātai
\frac{129\sqrt{455}}{10}\approx 275.166404199
Tohaina
Kua tāruatia ki te papatopenga
258\sqrt{\frac{2275}{2000}}
Whakareatia te 65 ki te 35, ka 2275.
258\sqrt{\frac{91}{80}}
Whakahekea te hautanga \frac{2275}{2000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
258\times \frac{\sqrt{91}}{\sqrt{80}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{91}{80}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{91}}{\sqrt{80}}.
258\times \frac{\sqrt{91}}{4\sqrt{5}}
Tauwehea te 80=4^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 5} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{5}. Tuhia te pūtakerua o te 4^{2}.
258\times \frac{\sqrt{91}\sqrt{5}}{4\left(\sqrt{5}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{91}}{4\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
258\times \frac{\sqrt{91}\sqrt{5}}{4\times 5}
Ko te pūrua o \sqrt{5} ko 5.
258\times \frac{\sqrt{455}}{4\times 5}
Hei whakarea \sqrt{91} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
258\times \frac{\sqrt{455}}{20}
Whakareatia te 4 ki te 5, ka 20.
\frac{258\sqrt{455}}{20}
Tuhia te 258\times \frac{\sqrt{455}}{20} hei hautanga kotahi.
\frac{129}{10}\sqrt{455}
Whakawehea te 258\sqrt{455} ki te 20, kia riro ko \frac{129}{10}\sqrt{455}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}