Whakaoti mō x
x=12
x=-18
Graph
Tohaina
Kua tāruatia ki te papatopenga
2500=1600+\left(6+2x\right)^{2}
Pahekotia te x me x, ka 2x.
2500=1600+36+24x+4x^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(6+2x\right)^{2}.
2500=1636+24x+4x^{2}
Tāpirihia te 1600 ki te 36, ka 1636.
1636+24x+4x^{2}=2500
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1636+24x+4x^{2}-2500=0
Tangohia te 2500 mai i ngā taha e rua.
-864+24x+4x^{2}=0
Tangohia te 2500 i te 1636, ka -864.
-216+6x+x^{2}=0
Whakawehea ngā taha e rua ki te 4.
x^{2}+6x-216=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=6 ab=1\left(-216\right)=-216
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-216. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,216 -2,108 -3,72 -4,54 -6,36 -8,27 -9,24 -12,18
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -216.
-1+216=215 -2+108=106 -3+72=69 -4+54=50 -6+36=30 -8+27=19 -9+24=15 -12+18=6
Tātaihia te tapeke mō ia takirua.
a=-12 b=18
Ko te otinga te takirua ka hoatu i te tapeke 6.
\left(x^{2}-12x\right)+\left(18x-216\right)
Tuhia anō te x^{2}+6x-216 hei \left(x^{2}-12x\right)+\left(18x-216\right).
x\left(x-12\right)+18\left(x-12\right)
Tauwehea te x i te tuatahi me te 18 i te rōpū tuarua.
\left(x-12\right)\left(x+18\right)
Whakatauwehea atu te kīanga pātahi x-12 mā te whakamahi i te āhuatanga tātai tohatoha.
x=12 x=-18
Hei kimi otinga whārite, me whakaoti te x-12=0 me te x+18=0.
2500=1600+\left(6+2x\right)^{2}
Pahekotia te x me x, ka 2x.
2500=1600+36+24x+4x^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(6+2x\right)^{2}.
2500=1636+24x+4x^{2}
Tāpirihia te 1600 ki te 36, ka 1636.
1636+24x+4x^{2}=2500
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1636+24x+4x^{2}-2500=0
Tangohia te 2500 mai i ngā taha e rua.
-864+24x+4x^{2}=0
Tangohia te 2500 i te 1636, ka -864.
4x^{2}+24x-864=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-24±\sqrt{24^{2}-4\times 4\left(-864\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 24 mō b, me -864 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24±\sqrt{576-4\times 4\left(-864\right)}}{2\times 4}
Pūrua 24.
x=\frac{-24±\sqrt{576-16\left(-864\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-24±\sqrt{576+13824}}{2\times 4}
Whakareatia -16 ki te -864.
x=\frac{-24±\sqrt{14400}}{2\times 4}
Tāpiri 576 ki te 13824.
x=\frac{-24±120}{2\times 4}
Tuhia te pūtakerua o te 14400.
x=\frac{-24±120}{8}
Whakareatia 2 ki te 4.
x=\frac{96}{8}
Nā, me whakaoti te whārite x=\frac{-24±120}{8} ina he tāpiri te ±. Tāpiri -24 ki te 120.
x=12
Whakawehe 96 ki te 8.
x=-\frac{144}{8}
Nā, me whakaoti te whārite x=\frac{-24±120}{8} ina he tango te ±. Tango 120 mai i -24.
x=-18
Whakawehe -144 ki te 8.
x=12 x=-18
Kua oti te whārite te whakatau.
2500=1600+\left(6+2x\right)^{2}
Pahekotia te x me x, ka 2x.
2500=1600+36+24x+4x^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(6+2x\right)^{2}.
2500=1636+24x+4x^{2}
Tāpirihia te 1600 ki te 36, ka 1636.
1636+24x+4x^{2}=2500
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
24x+4x^{2}=2500-1636
Tangohia te 1636 mai i ngā taha e rua.
24x+4x^{2}=864
Tangohia te 1636 i te 2500, ka 864.
4x^{2}+24x=864
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{4x^{2}+24x}{4}=\frac{864}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{24}{4}x=\frac{864}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+6x=\frac{864}{4}
Whakawehe 24 ki te 4.
x^{2}+6x=216
Whakawehe 864 ki te 4.
x^{2}+6x+3^{2}=216+3^{2}
Whakawehea te 6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 3. Nā, tāpiria te pūrua o te 3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+6x+9=216+9
Pūrua 3.
x^{2}+6x+9=225
Tāpiri 216 ki te 9.
\left(x+3\right)^{2}=225
Tauwehea x^{2}+6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{225}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+3=15 x+3=-15
Whakarūnātia.
x=12 x=-18
Me tango 3 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}