Tīpoka ki ngā ihirangi matua
Whakaoti mō v
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

v^{2}=\frac{241960}{250}
Whakawehea ngā taha e rua ki te 250.
v^{2}=\frac{24196}{25}
Whakahekea te hautanga \frac{241960}{250} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
v=\frac{2\sqrt{6049}}{5} v=-\frac{2\sqrt{6049}}{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
v^{2}=\frac{241960}{250}
Whakawehea ngā taha e rua ki te 250.
v^{2}=\frac{24196}{25}
Whakahekea te hautanga \frac{241960}{250} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
v^{2}-\frac{24196}{25}=0
Tangohia te \frac{24196}{25} mai i ngā taha e rua.
v=\frac{0±\sqrt{0^{2}-4\left(-\frac{24196}{25}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{24196}{25} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{0±\sqrt{-4\left(-\frac{24196}{25}\right)}}{2}
Pūrua 0.
v=\frac{0±\sqrt{\frac{96784}{25}}}{2}
Whakareatia -4 ki te -\frac{24196}{25}.
v=\frac{0±\frac{4\sqrt{6049}}{5}}{2}
Tuhia te pūtakerua o te \frac{96784}{25}.
v=\frac{2\sqrt{6049}}{5}
Nā, me whakaoti te whārite v=\frac{0±\frac{4\sqrt{6049}}{5}}{2} ina he tāpiri te ±.
v=-\frac{2\sqrt{6049}}{5}
Nā, me whakaoti te whārite v=\frac{0±\frac{4\sqrt{6049}}{5}}{2} ina he tango te ±.
v=\frac{2\sqrt{6049}}{5} v=-\frac{2\sqrt{6049}}{5}
Kua oti te whārite te whakatau.