Whakaoti mō m
m=300
Tohaina
Kua tāruatia ki te papatopenga
10500\times 20=m\times 21\times 20+\left(m-50\right)\times 336
Whakareatia te 250 ki te 42, ka 10500.
210000=m\times 21\times 20+\left(m-50\right)\times 336
Whakareatia te 10500 ki te 20, ka 210000.
210000=m\times 420+\left(m-50\right)\times 336
Whakareatia te 21 ki te 20, ka 420.
210000=m\times 420+336m-16800
Whakamahia te āhuatanga tohatoha hei whakarea te m-50 ki te 336.
210000=756m-16800
Pahekotia te m\times 420 me 336m, ka 756m.
756m-16800=210000
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
756m=210000+16800
Me tāpiri te 16800 ki ngā taha e rua.
756m=226800
Tāpirihia te 210000 ki te 16800, ka 226800.
m=\frac{226800}{756}
Whakawehea ngā taha e rua ki te 756.
m=300
Whakawehea te 226800 ki te 756, kia riro ko 300.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}