Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{250}{2}=x^{3}
Whakawehea ngā taha e rua ki te 2.
125=x^{3}
Whakawehea te 250 ki te 2, kia riro ko 125.
x^{3}=125
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{3}-125=0
Tangohia te 125 mai i ngā taha e rua.
±125,±25,±5,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -125, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=5
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}+5x+25=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}-125 ki te x-5, kia riro ko x^{2}+5x+25. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-5±\sqrt{5^{2}-4\times 1\times 25}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 5 mō te b, me te 25 mō te c i te ture pūrua.
x=\frac{-5±\sqrt{-75}}{2}
Mahia ngā tātaitai.
x=\frac{-5i\sqrt{3}-5}{2} x=\frac{-5+5i\sqrt{3}}{2}
Whakaotia te whārite x^{2}+5x+25=0 ina he tōrunga te ±, ina he tōraro te ±.
x=5 x=\frac{-5i\sqrt{3}-5}{2} x=\frac{-5+5i\sqrt{3}}{2}
Rārangitia ngā otinga katoa i kitea.
\frac{250}{2}=x^{3}
Whakawehea ngā taha e rua ki te 2.
125=x^{3}
Whakawehea te 250 ki te 2, kia riro ko 125.
x^{3}=125
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{3}-125=0
Tangohia te 125 mai i ngā taha e rua.
±125,±25,±5,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -125, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=5
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}+5x+25=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}-125 ki te x-5, kia riro ko x^{2}+5x+25. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-5±\sqrt{5^{2}-4\times 1\times 25}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 5 mō te b, me te 25 mō te c i te ture pūrua.
x=\frac{-5±\sqrt{-75}}{2}
Mahia ngā tātaitai.
x\in \emptyset
Tā te mea e kore te pūrua o tētahi tau tōraro e tautohutia ki te āpure tūturu, kāhore he rongoā.
x=5
Rārangitia ngā otinga katoa i kitea.