Whakaoti mō y
y=\frac{-1+\sqrt{3199}i}{50}\approx -0.02+1.131194059i
y=\frac{-\sqrt{3199}i-1}{50}\approx -0.02-1.131194059i
Tohaina
Kua tāruatia ki te papatopenga
25y^{2}+y+32=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-1±\sqrt{1^{2}-4\times 25\times 32}}{2\times 25}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 25 mō a, 1 mō b, me 32 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-1±\sqrt{1-4\times 25\times 32}}{2\times 25}
Pūrua 1.
y=\frac{-1±\sqrt{1-100\times 32}}{2\times 25}
Whakareatia -4 ki te 25.
y=\frac{-1±\sqrt{1-3200}}{2\times 25}
Whakareatia -100 ki te 32.
y=\frac{-1±\sqrt{-3199}}{2\times 25}
Tāpiri 1 ki te -3200.
y=\frac{-1±\sqrt{3199}i}{2\times 25}
Tuhia te pūtakerua o te -3199.
y=\frac{-1±\sqrt{3199}i}{50}
Whakareatia 2 ki te 25.
y=\frac{-1+\sqrt{3199}i}{50}
Nā, me whakaoti te whārite y=\frac{-1±\sqrt{3199}i}{50} ina he tāpiri te ±. Tāpiri -1 ki te i\sqrt{3199}.
y=\frac{-\sqrt{3199}i-1}{50}
Nā, me whakaoti te whārite y=\frac{-1±\sqrt{3199}i}{50} ina he tango te ±. Tango i\sqrt{3199} mai i -1.
y=\frac{-1+\sqrt{3199}i}{50} y=\frac{-\sqrt{3199}i-1}{50}
Kua oti te whārite te whakatau.
25y^{2}+y+32=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
25y^{2}+y+32-32=-32
Me tango 32 mai i ngā taha e rua o te whārite.
25y^{2}+y=-32
Mā te tango i te 32 i a ia ake anō ka toe ko te 0.
\frac{25y^{2}+y}{25}=-\frac{32}{25}
Whakawehea ngā taha e rua ki te 25.
y^{2}+\frac{1}{25}y=-\frac{32}{25}
Mā te whakawehe ki te 25 ka wetekia te whakareanga ki te 25.
y^{2}+\frac{1}{25}y+\left(\frac{1}{50}\right)^{2}=-\frac{32}{25}+\left(\frac{1}{50}\right)^{2}
Whakawehea te \frac{1}{25}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{50}. Nā, tāpiria te pūrua o te \frac{1}{50} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}+\frac{1}{25}y+\frac{1}{2500}=-\frac{32}{25}+\frac{1}{2500}
Pūruatia \frac{1}{50} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}+\frac{1}{25}y+\frac{1}{2500}=-\frac{3199}{2500}
Tāpiri -\frac{32}{25} ki te \frac{1}{2500} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(y+\frac{1}{50}\right)^{2}=-\frac{3199}{2500}
Tauwehea y^{2}+\frac{1}{25}y+\frac{1}{2500}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{1}{50}\right)^{2}}=\sqrt{-\frac{3199}{2500}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y+\frac{1}{50}=\frac{\sqrt{3199}i}{50} y+\frac{1}{50}=-\frac{\sqrt{3199}i}{50}
Whakarūnātia.
y=\frac{-1+\sqrt{3199}i}{50} y=\frac{-\sqrt{3199}i-1}{50}
Me tango \frac{1}{50} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}