Whakaoti mō x
x=\frac{7y}{25}-\frac{8}{5}
Whakaoti mō y
y=\frac{25x+40}{7}
Graph
Tohaina
Kua tāruatia ki te papatopenga
25x+50=10+7y
Me tāpiri te 7y ki ngā taha e rua.
25x=10+7y-50
Tangohia te 50 mai i ngā taha e rua.
25x=-40+7y
Tangohia te 50 i te 10, ka -40.
25x=7y-40
He hanga arowhānui tō te whārite.
\frac{25x}{25}=\frac{7y-40}{25}
Whakawehea ngā taha e rua ki te 25.
x=\frac{7y-40}{25}
Mā te whakawehe ki te 25 ka wetekia te whakareanga ki te 25.
x=\frac{7y}{25}-\frac{8}{5}
Whakawehe -40+7y ki te 25.
-7y+50=10-25x
Tangohia te 25x mai i ngā taha e rua.
-7y=10-25x-50
Tangohia te 50 mai i ngā taha e rua.
-7y=-40-25x
Tangohia te 50 i te 10, ka -40.
-7y=-25x-40
He hanga arowhānui tō te whārite.
\frac{-7y}{-7}=\frac{-25x-40}{-7}
Whakawehea ngā taha e rua ki te -7.
y=\frac{-25x-40}{-7}
Mā te whakawehe ki te -7 ka wetekia te whakareanga ki te -7.
y=\frac{25x+40}{7}
Whakawehe -40-25x ki te -7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}