Whakaoti mō x (complex solution)
x=\frac{9}{5}+\frac{1}{5}i=1.8+0.2i
x=\frac{9}{5}-\frac{1}{5}i=1.8-0.2i
Graph
Tohaina
Kua tāruatia ki te papatopenga
25x^{2}-90x+82=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\times 25\times 82}}{2\times 25}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 25 mō a, -90 mō b, me 82 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-90\right)±\sqrt{8100-4\times 25\times 82}}{2\times 25}
Pūrua -90.
x=\frac{-\left(-90\right)±\sqrt{8100-100\times 82}}{2\times 25}
Whakareatia -4 ki te 25.
x=\frac{-\left(-90\right)±\sqrt{8100-8200}}{2\times 25}
Whakareatia -100 ki te 82.
x=\frac{-\left(-90\right)±\sqrt{-100}}{2\times 25}
Tāpiri 8100 ki te -8200.
x=\frac{-\left(-90\right)±10i}{2\times 25}
Tuhia te pūtakerua o te -100.
x=\frac{90±10i}{2\times 25}
Ko te tauaro o -90 ko 90.
x=\frac{90±10i}{50}
Whakareatia 2 ki te 25.
x=\frac{90+10i}{50}
Nā, me whakaoti te whārite x=\frac{90±10i}{50} ina he tāpiri te ±. Tāpiri 90 ki te 10i.
x=\frac{9}{5}+\frac{1}{5}i
Whakawehe 90+10i ki te 50.
x=\frac{90-10i}{50}
Nā, me whakaoti te whārite x=\frac{90±10i}{50} ina he tango te ±. Tango 10i mai i 90.
x=\frac{9}{5}-\frac{1}{5}i
Whakawehe 90-10i ki te 50.
x=\frac{9}{5}+\frac{1}{5}i x=\frac{9}{5}-\frac{1}{5}i
Kua oti te whārite te whakatau.
25x^{2}-90x+82=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
25x^{2}-90x+82-82=-82
Me tango 82 mai i ngā taha e rua o te whārite.
25x^{2}-90x=-82
Mā te tango i te 82 i a ia ake anō ka toe ko te 0.
\frac{25x^{2}-90x}{25}=-\frac{82}{25}
Whakawehea ngā taha e rua ki te 25.
x^{2}+\left(-\frac{90}{25}\right)x=-\frac{82}{25}
Mā te whakawehe ki te 25 ka wetekia te whakareanga ki te 25.
x^{2}-\frac{18}{5}x=-\frac{82}{25}
Whakahekea te hautanga \frac{-90}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x^{2}-\frac{18}{5}x+\left(-\frac{9}{5}\right)^{2}=-\frac{82}{25}+\left(-\frac{9}{5}\right)^{2}
Whakawehea te -\frac{18}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{5}. Nā, tāpiria te pūrua o te -\frac{9}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{18}{5}x+\frac{81}{25}=\frac{-82+81}{25}
Pūruatia -\frac{9}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{18}{5}x+\frac{81}{25}=-\frac{1}{25}
Tāpiri -\frac{82}{25} ki te \frac{81}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{9}{5}\right)^{2}=-\frac{1}{25}
Tauwehea x^{2}-\frac{18}{5}x+\frac{81}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{5}\right)^{2}}=\sqrt{-\frac{1}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{9}{5}=\frac{1}{5}i x-\frac{9}{5}=-\frac{1}{5}i
Whakarūnātia.
x=\frac{9}{5}+\frac{1}{5}i x=\frac{9}{5}-\frac{1}{5}i
Me tāpiri \frac{9}{5} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}