Whakaoti mō x
x=\frac{\sqrt{661}+19}{50}\approx 0.894198405
x=\frac{19-\sqrt{661}}{50}\approx -0.134198405
Graph
Tohaina
Kua tāruatia ki te papatopenga
25x^{2}-19x-3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 25\left(-3\right)}}{2\times 25}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 25 mō a, -19 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-19\right)±\sqrt{361-4\times 25\left(-3\right)}}{2\times 25}
Pūrua -19.
x=\frac{-\left(-19\right)±\sqrt{361-100\left(-3\right)}}{2\times 25}
Whakareatia -4 ki te 25.
x=\frac{-\left(-19\right)±\sqrt{361+300}}{2\times 25}
Whakareatia -100 ki te -3.
x=\frac{-\left(-19\right)±\sqrt{661}}{2\times 25}
Tāpiri 361 ki te 300.
x=\frac{19±\sqrt{661}}{2\times 25}
Ko te tauaro o -19 ko 19.
x=\frac{19±\sqrt{661}}{50}
Whakareatia 2 ki te 25.
x=\frac{\sqrt{661}+19}{50}
Nā, me whakaoti te whārite x=\frac{19±\sqrt{661}}{50} ina he tāpiri te ±. Tāpiri 19 ki te \sqrt{661}.
x=\frac{19-\sqrt{661}}{50}
Nā, me whakaoti te whārite x=\frac{19±\sqrt{661}}{50} ina he tango te ±. Tango \sqrt{661} mai i 19.
x=\frac{\sqrt{661}+19}{50} x=\frac{19-\sqrt{661}}{50}
Kua oti te whārite te whakatau.
25x^{2}-19x-3=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
25x^{2}-19x-3-\left(-3\right)=-\left(-3\right)
Me tāpiri 3 ki ngā taha e rua o te whārite.
25x^{2}-19x=-\left(-3\right)
Mā te tango i te -3 i a ia ake anō ka toe ko te 0.
25x^{2}-19x=3
Tango -3 mai i 0.
\frac{25x^{2}-19x}{25}=\frac{3}{25}
Whakawehea ngā taha e rua ki te 25.
x^{2}-\frac{19}{25}x=\frac{3}{25}
Mā te whakawehe ki te 25 ka wetekia te whakareanga ki te 25.
x^{2}-\frac{19}{25}x+\left(-\frac{19}{50}\right)^{2}=\frac{3}{25}+\left(-\frac{19}{50}\right)^{2}
Whakawehea te -\frac{19}{25}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{19}{50}. Nā, tāpiria te pūrua o te -\frac{19}{50} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{19}{25}x+\frac{361}{2500}=\frac{3}{25}+\frac{361}{2500}
Pūruatia -\frac{19}{50} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{19}{25}x+\frac{361}{2500}=\frac{661}{2500}
Tāpiri \frac{3}{25} ki te \frac{361}{2500} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{19}{50}\right)^{2}=\frac{661}{2500}
Tauwehea x^{2}-\frac{19}{25}x+\frac{361}{2500}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{50}\right)^{2}}=\sqrt{\frac{661}{2500}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{19}{50}=\frac{\sqrt{661}}{50} x-\frac{19}{50}=-\frac{\sqrt{661}}{50}
Whakarūnātia.
x=\frac{\sqrt{661}+19}{50} x=\frac{19-\sqrt{661}}{50}
Me tāpiri \frac{19}{50} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}