Whakaoti mō x
x=-\frac{5}{6}\approx -0.833333333
x = \frac{5}{4} = 1\frac{1}{4} = 1.25
Graph
Tohaina
Kua tāruatia ki te papatopenga
24x^{2}-10x-25=0
Pahekotia te 25x^{2} me -x^{2}, ka 24x^{2}.
a+b=-10 ab=24\left(-25\right)=-600
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 24x^{2}+ax+bx-25. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-600 2,-300 3,-200 4,-150 5,-120 6,-100 8,-75 10,-60 12,-50 15,-40 20,-30 24,-25
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -600.
1-600=-599 2-300=-298 3-200=-197 4-150=-146 5-120=-115 6-100=-94 8-75=-67 10-60=-50 12-50=-38 15-40=-25 20-30=-10 24-25=-1
Tātaihia te tapeke mō ia takirua.
a=-30 b=20
Ko te otinga te takirua ka hoatu i te tapeke -10.
\left(24x^{2}-30x\right)+\left(20x-25\right)
Tuhia anō te 24x^{2}-10x-25 hei \left(24x^{2}-30x\right)+\left(20x-25\right).
6x\left(4x-5\right)+5\left(4x-5\right)
Tauwehea te 6x i te tuatahi me te 5 i te rōpū tuarua.
\left(4x-5\right)\left(6x+5\right)
Whakatauwehea atu te kīanga pātahi 4x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{5}{4} x=-\frac{5}{6}
Hei kimi otinga whārite, me whakaoti te 4x-5=0 me te 6x+5=0.
24x^{2}-10x-25=0
Pahekotia te 25x^{2} me -x^{2}, ka 24x^{2}.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 24\left(-25\right)}}{2\times 24}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 24 mō a, -10 mō b, me -25 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 24\left(-25\right)}}{2\times 24}
Pūrua -10.
x=\frac{-\left(-10\right)±\sqrt{100-96\left(-25\right)}}{2\times 24}
Whakareatia -4 ki te 24.
x=\frac{-\left(-10\right)±\sqrt{100+2400}}{2\times 24}
Whakareatia -96 ki te -25.
x=\frac{-\left(-10\right)±\sqrt{2500}}{2\times 24}
Tāpiri 100 ki te 2400.
x=\frac{-\left(-10\right)±50}{2\times 24}
Tuhia te pūtakerua o te 2500.
x=\frac{10±50}{2\times 24}
Ko te tauaro o -10 ko 10.
x=\frac{10±50}{48}
Whakareatia 2 ki te 24.
x=\frac{60}{48}
Nā, me whakaoti te whārite x=\frac{10±50}{48} ina he tāpiri te ±. Tāpiri 10 ki te 50.
x=\frac{5}{4}
Whakahekea te hautanga \frac{60}{48} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
x=-\frac{40}{48}
Nā, me whakaoti te whārite x=\frac{10±50}{48} ina he tango te ±. Tango 50 mai i 10.
x=-\frac{5}{6}
Whakahekea te hautanga \frac{-40}{48} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
x=\frac{5}{4} x=-\frac{5}{6}
Kua oti te whārite te whakatau.
24x^{2}-10x-25=0
Pahekotia te 25x^{2} me -x^{2}, ka 24x^{2}.
24x^{2}-10x=25
Me tāpiri te 25 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{24x^{2}-10x}{24}=\frac{25}{24}
Whakawehea ngā taha e rua ki te 24.
x^{2}+\left(-\frac{10}{24}\right)x=\frac{25}{24}
Mā te whakawehe ki te 24 ka wetekia te whakareanga ki te 24.
x^{2}-\frac{5}{12}x=\frac{25}{24}
Whakahekea te hautanga \frac{-10}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{5}{12}x+\left(-\frac{5}{24}\right)^{2}=\frac{25}{24}+\left(-\frac{5}{24}\right)^{2}
Whakawehea te -\frac{5}{12}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{24}. Nā, tāpiria te pūrua o te -\frac{5}{24} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{5}{12}x+\frac{25}{576}=\frac{25}{24}+\frac{25}{576}
Pūruatia -\frac{5}{24} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{5}{12}x+\frac{25}{576}=\frac{625}{576}
Tāpiri \frac{25}{24} ki te \frac{25}{576} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{5}{24}\right)^{2}=\frac{625}{576}
Tauwehea x^{2}-\frac{5}{12}x+\frac{25}{576}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{24}\right)^{2}}=\sqrt{\frac{625}{576}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{24}=\frac{25}{24} x-\frac{5}{24}=-\frac{25}{24}
Whakarūnātia.
x=\frac{5}{4} x=-\frac{5}{6}
Me tāpiri \frac{5}{24} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}