Whakaoti mō x
x=-\frac{y}{125}+46
Whakaoti mō y
y=5750-125x
Graph
Tohaina
Kua tāruatia ki te papatopenga
2500x+20y=500000\times \frac{23}{100}
Whakareatia ngā taha e rua o te whārite ki te 100.
2500x+20y=115000
Whakareatia te 500000 ki te \frac{23}{100}, ka 115000.
2500x=115000-20y
Tangohia te 20y mai i ngā taha e rua.
\frac{2500x}{2500}=\frac{115000-20y}{2500}
Whakawehea ngā taha e rua ki te 2500.
x=\frac{115000-20y}{2500}
Mā te whakawehe ki te 2500 ka wetekia te whakareanga ki te 2500.
x=-\frac{y}{125}+46
Whakawehe 115000-20y ki te 2500.
2500x+20y=500000\times \frac{23}{100}
Whakareatia ngā taha e rua o te whārite ki te 100.
2500x+20y=115000
Whakareatia te 500000 ki te \frac{23}{100}, ka 115000.
20y=115000-2500x
Tangohia te 2500x mai i ngā taha e rua.
\frac{20y}{20}=\frac{115000-2500x}{20}
Whakawehea ngā taha e rua ki te 20.
y=\frac{115000-2500x}{20}
Mā te whakawehe ki te 20 ka wetekia te whakareanga ki te 20.
y=5750-125x
Whakawehe 115000-2500x ki te 20.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}