Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-30 ab=25\times 9=225
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 25n^{2}+an+bn+9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-225 -3,-75 -5,-45 -9,-25 -15,-15
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 225.
-1-225=-226 -3-75=-78 -5-45=-50 -9-25=-34 -15-15=-30
Tātaihia te tapeke mō ia takirua.
a=-15 b=-15
Ko te otinga te takirua ka hoatu i te tapeke -30.
\left(25n^{2}-15n\right)+\left(-15n+9\right)
Tuhia anō te 25n^{2}-30n+9 hei \left(25n^{2}-15n\right)+\left(-15n+9\right).
5n\left(5n-3\right)-3\left(5n-3\right)
Tauwehea te 5n i te tuatahi me te -3 i te rōpū tuarua.
\left(5n-3\right)\left(5n-3\right)
Whakatauwehea atu te kīanga pātahi 5n-3 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(5n-3\right)^{2}
Tuhia anōtia hei pūrua huarua.
factor(25n^{2}-30n+9)
Ko te tikanga tātai o tēnei huatoru he pūrua huatoru, ka whakareatia pea e tētahi tauwehe pātahi. Ka taea ngā pūrua huatoru te tauwehe mā te kimi i ngā pūtakerua o ngā kīanga tau ārahi, autō hoki.
gcf(25,-30,9)=1
Kimihia te tauwehe pātahi nui rawa o ngā tau whakarea.
\sqrt{25n^{2}}=5n
Kimihia te pūtakerua o te kīanga tau ārahi, 25n^{2}.
\sqrt{9}=3
Kimihia te pūtakerua o te kīanga tau autō, 9.
\left(5n-3\right)^{2}
Ko te pūrua huatoru te pūrua o te huarua ko te tapeke tērā, te huatango rānei o ngā pūtakerua o ngā kīanga tau ārahi, autō hoki, e whakaritea ai te tohu e te tohu o te kīanga tau waenga o te pūrua huatoru.
25n^{2}-30n+9=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
n=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 25\times 9}}{2\times 25}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-\left(-30\right)±\sqrt{900-4\times 25\times 9}}{2\times 25}
Pūrua -30.
n=\frac{-\left(-30\right)±\sqrt{900-100\times 9}}{2\times 25}
Whakareatia -4 ki te 25.
n=\frac{-\left(-30\right)±\sqrt{900-900}}{2\times 25}
Whakareatia -100 ki te 9.
n=\frac{-\left(-30\right)±\sqrt{0}}{2\times 25}
Tāpiri 900 ki te -900.
n=\frac{-\left(-30\right)±0}{2\times 25}
Tuhia te pūtakerua o te 0.
n=\frac{30±0}{2\times 25}
Ko te tauaro o -30 ko 30.
n=\frac{30±0}{50}
Whakareatia 2 ki te 25.
25n^{2}-30n+9=25\left(n-\frac{3}{5}\right)\left(n-\frac{3}{5}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3}{5} mō te x_{1} me te \frac{3}{5} mō te x_{2}.
25n^{2}-30n+9=25\times \frac{5n-3}{5}\left(n-\frac{3}{5}\right)
Tango \frac{3}{5} mai i n mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
25n^{2}-30n+9=25\times \frac{5n-3}{5}\times \frac{5n-3}{5}
Tango \frac{3}{5} mai i n mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
25n^{2}-30n+9=25\times \frac{\left(5n-3\right)\left(5n-3\right)}{5\times 5}
Whakareatia \frac{5n-3}{5} ki te \frac{5n-3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
25n^{2}-30n+9=25\times \frac{\left(5n-3\right)\left(5n-3\right)}{25}
Whakareatia 5 ki te 5.
25n^{2}-30n+9=\left(5n-3\right)\left(5n-3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 25 i roto i te 25 me te 25.