Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5\left(5b^{2}-4b\right)
Tauwehea te 5.
b\left(5b-4\right)
Whakaarohia te 5b^{2}-4b. Tauwehea te b.
5b\left(5b-4\right)
Me tuhi anō te kīanga whakatauwehe katoa.
25b^{2}-20b=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
b=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}}}{2\times 25}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
b=\frac{-\left(-20\right)±20}{2\times 25}
Tuhia te pūtakerua o te \left(-20\right)^{2}.
b=\frac{20±20}{2\times 25}
Ko te tauaro o -20 ko 20.
b=\frac{20±20}{50}
Whakareatia 2 ki te 25.
b=\frac{40}{50}
Nā, me whakaoti te whārite b=\frac{20±20}{50} ina he tāpiri te ±. Tāpiri 20 ki te 20.
b=\frac{4}{5}
Whakahekea te hautanga \frac{40}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
b=\frac{0}{50}
Nā, me whakaoti te whārite b=\frac{20±20}{50} ina he tango te ±. Tango 20 mai i 20.
b=0
Whakawehe 0 ki te 50.
25b^{2}-20b=25\left(b-\frac{4}{5}\right)b
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{4}{5} mō te x_{1} me te 0 mō te x_{2}.
25b^{2}-20b=25\times \frac{5b-4}{5}b
Tango \frac{4}{5} mai i b mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
25b^{2}-20b=5\left(5b-4\right)b
Whakakorea atu te tauwehe pūnoa nui rawa 5 i roto i te 25 me te 5.