Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5\left(5b^{2}-2b\right)
Tauwehea te 5.
b\left(5b-2\right)
Whakaarohia te 5b^{2}-2b. Tauwehea te b.
5b\left(5b-2\right)
Me tuhi anō te kīanga whakatauwehe katoa.
25b^{2}-10b=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
b=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}}}{2\times 25}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
b=\frac{-\left(-10\right)±10}{2\times 25}
Tuhia te pūtakerua o te \left(-10\right)^{2}.
b=\frac{10±10}{2\times 25}
Ko te tauaro o -10 ko 10.
b=\frac{10±10}{50}
Whakareatia 2 ki te 25.
b=\frac{20}{50}
Nā, me whakaoti te whārite b=\frac{10±10}{50} ina he tāpiri te ±. Tāpiri 10 ki te 10.
b=\frac{2}{5}
Whakahekea te hautanga \frac{20}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
b=\frac{0}{50}
Nā, me whakaoti te whārite b=\frac{10±10}{50} ina he tango te ±. Tango 10 mai i 10.
b=0
Whakawehe 0 ki te 50.
25b^{2}-10b=25\left(b-\frac{2}{5}\right)b
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{2}{5} mō te x_{1} me te 0 mō te x_{2}.
25b^{2}-10b=25\times \frac{5b-2}{5}b
Tango \frac{2}{5} mai i b mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
25b^{2}-10b=5\left(5b-2\right)b
Whakakorea atu te tauwehe pūnoa nui rawa 5 i roto i te 25 me te 5.