Tauwehe
\left(5b+9\right)^{2}
Aromātai
\left(5b+9\right)^{2}
Tohaina
Kua tāruatia ki te papatopenga
p+q=90 pq=25\times 81=2025
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 25b^{2}+pb+qb+81. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
1,2025 3,675 5,405 9,225 15,135 25,81 27,75 45,45
I te mea kua tōrunga te pq, he ōrite te tohu o p me q. I te mea kua tōrunga te p+q, he tōrunga hoki a p me q. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 2025.
1+2025=2026 3+675=678 5+405=410 9+225=234 15+135=150 25+81=106 27+75=102 45+45=90
Tātaihia te tapeke mō ia takirua.
p=45 q=45
Ko te otinga te takirua ka hoatu i te tapeke 90.
\left(25b^{2}+45b\right)+\left(45b+81\right)
Tuhia anō te 25b^{2}+90b+81 hei \left(25b^{2}+45b\right)+\left(45b+81\right).
5b\left(5b+9\right)+9\left(5b+9\right)
Tauwehea te 5b i te tuatahi me te 9 i te rōpū tuarua.
\left(5b+9\right)\left(5b+9\right)
Whakatauwehea atu te kīanga pātahi 5b+9 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(5b+9\right)^{2}
Tuhia anōtia hei pūrua huarua.
factor(25b^{2}+90b+81)
Ko te tikanga tātai o tēnei huatoru he pūrua huatoru, ka whakareatia pea e tētahi tauwehe pātahi. Ka taea ngā pūrua huatoru te tauwehe mā te kimi i ngā pūtakerua o ngā kīanga tau ārahi, autō hoki.
gcf(25,90,81)=1
Kimihia te tauwehe pātahi nui rawa o ngā tau whakarea.
\sqrt{25b^{2}}=5b
Kimihia te pūtakerua o te kīanga tau ārahi, 25b^{2}.
\sqrt{81}=9
Kimihia te pūtakerua o te kīanga tau autō, 81.
\left(5b+9\right)^{2}
Ko te pūrua huatoru te pūrua o te huarua ko te tapeke tērā, te huatango rānei o ngā pūtakerua o ngā kīanga tau ārahi, autō hoki, e whakaritea ai te tohu e te tohu o te kīanga tau waenga o te pūrua huatoru.
25b^{2}+90b+81=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
b=\frac{-90±\sqrt{90^{2}-4\times 25\times 81}}{2\times 25}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
b=\frac{-90±\sqrt{8100-4\times 25\times 81}}{2\times 25}
Pūrua 90.
b=\frac{-90±\sqrt{8100-100\times 81}}{2\times 25}
Whakareatia -4 ki te 25.
b=\frac{-90±\sqrt{8100-8100}}{2\times 25}
Whakareatia -100 ki te 81.
b=\frac{-90±\sqrt{0}}{2\times 25}
Tāpiri 8100 ki te -8100.
b=\frac{-90±0}{2\times 25}
Tuhia te pūtakerua o te 0.
b=\frac{-90±0}{50}
Whakareatia 2 ki te 25.
25b^{2}+90b+81=25\left(b-\left(-\frac{9}{5}\right)\right)\left(b-\left(-\frac{9}{5}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{9}{5} mō te x_{1} me te -\frac{9}{5} mō te x_{2}.
25b^{2}+90b+81=25\left(b+\frac{9}{5}\right)\left(b+\frac{9}{5}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
25b^{2}+90b+81=25\times \frac{5b+9}{5}\left(b+\frac{9}{5}\right)
Tāpiri \frac{9}{5} ki te b mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
25b^{2}+90b+81=25\times \frac{5b+9}{5}\times \frac{5b+9}{5}
Tāpiri \frac{9}{5} ki te b mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
25b^{2}+90b+81=25\times \frac{\left(5b+9\right)\left(5b+9\right)}{5\times 5}
Whakareatia \frac{5b+9}{5} ki te \frac{5b+9}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
25b^{2}+90b+81=25\times \frac{\left(5b+9\right)\left(5b+9\right)}{25}
Whakareatia 5 ki te 5.
25b^{2}+90b+81=\left(5b+9\right)\left(5b+9\right)
Whakakorea atu te tauwehe pūnoa nui rawa 25 i roto i te 25 me te 25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}