Aromātai
1300a^{3}
Kimi Pārōnaki e ai ki a
3900a^{2}
Tohaina
Kua tāruatia ki te papatopenga
25a^{2}\times 13\times 4a
Whakareatia te a ki te a, ka a^{2}.
25a^{3}\times 13\times 4
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
325a^{3}\times 4
Whakareatia te 25 ki te 13, ka 325.
1300a^{3}
Whakareatia te 325 ki te 4, ka 1300.
\frac{\mathrm{d}}{\mathrm{d}a}(25a^{2}\times 13\times 4a)
Whakareatia te a ki te a, ka a^{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(25a^{3}\times 13\times 4)
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
\frac{\mathrm{d}}{\mathrm{d}a}(325a^{3}\times 4)
Whakareatia te 25 ki te 13, ka 325.
\frac{\mathrm{d}}{\mathrm{d}a}(1300a^{3})
Whakareatia te 325 ki te 4, ka 1300.
3\times 1300a^{3-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
3900a^{3-1}
Whakareatia 3 ki te 1300.
3900a^{2}
Tango 1 mai i 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}