Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4r^{2}-20r+25
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-20 ab=4\times 25=100
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 4r^{2}+ar+br+25. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-100 -2,-50 -4,-25 -5,-20 -10,-10
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 100.
-1-100=-101 -2-50=-52 -4-25=-29 -5-20=-25 -10-10=-20
Tātaihia te tapeke mō ia takirua.
a=-10 b=-10
Ko te otinga te takirua ka hoatu i te tapeke -20.
\left(4r^{2}-10r\right)+\left(-10r+25\right)
Tuhia anō te 4r^{2}-20r+25 hei \left(4r^{2}-10r\right)+\left(-10r+25\right).
2r\left(2r-5\right)-5\left(2r-5\right)
Tauwehea te 2r i te tuatahi me te -5 i te rōpū tuarua.
\left(2r-5\right)\left(2r-5\right)
Whakatauwehea atu te kīanga pātahi 2r-5 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(2r-5\right)^{2}
Tuhia anōtia hei pūrua huarua.
factor(4r^{2}-20r+25)
Ko te tikanga tātai o tēnei huatoru he pūrua huatoru, ka whakareatia pea e tētahi tauwehe pātahi. Ka taea ngā pūrua huatoru te tauwehe mā te kimi i ngā pūtakerua o ngā kīanga tau ārahi, autō hoki.
gcf(4,-20,25)=1
Kimihia te tauwehe pātahi nui rawa o ngā tau whakarea.
\sqrt{4r^{2}}=2r
Kimihia te pūtakerua o te kīanga tau ārahi, 4r^{2}.
\sqrt{25}=5
Kimihia te pūtakerua o te kīanga tau autō, 25.
\left(2r-5\right)^{2}
Ko te pūrua huatoru te pūrua o te huarua ko te tapeke tērā, te huatango rānei o ngā pūtakerua o ngā kīanga tau ārahi, autō hoki, e whakaritea ai te tohu e te tohu o te kīanga tau waenga o te pūrua huatoru.
4r^{2}-20r+25=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
r=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 4\times 25}}{2\times 4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
r=\frac{-\left(-20\right)±\sqrt{400-4\times 4\times 25}}{2\times 4}
Pūrua -20.
r=\frac{-\left(-20\right)±\sqrt{400-16\times 25}}{2\times 4}
Whakareatia -4 ki te 4.
r=\frac{-\left(-20\right)±\sqrt{400-400}}{2\times 4}
Whakareatia -16 ki te 25.
r=\frac{-\left(-20\right)±\sqrt{0}}{2\times 4}
Tāpiri 400 ki te -400.
r=\frac{-\left(-20\right)±0}{2\times 4}
Tuhia te pūtakerua o te 0.
r=\frac{20±0}{2\times 4}
Ko te tauaro o -20 ko 20.
r=\frac{20±0}{8}
Whakareatia 2 ki te 4.
4r^{2}-20r+25=4\left(r-\frac{5}{2}\right)\left(r-\frac{5}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{5}{2} mō te x_{1} me te \frac{5}{2} mō te x_{2}.
4r^{2}-20r+25=4\times \frac{2r-5}{2}\left(r-\frac{5}{2}\right)
Tango \frac{5}{2} mai i r mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4r^{2}-20r+25=4\times \frac{2r-5}{2}\times \frac{2r-5}{2}
Tango \frac{5}{2} mai i r mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4r^{2}-20r+25=4\times \frac{\left(2r-5\right)\left(2r-5\right)}{2\times 2}
Whakareatia \frac{2r-5}{2} ki te \frac{2r-5}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4r^{2}-20r+25=4\times \frac{\left(2r-5\right)\left(2r-5\right)}{4}
Whakareatia 2 ki te 2.
4r^{2}-20r+25=\left(2r-5\right)\left(2r-5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te 4 me te 4.