Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
25-57+\frac{7}{12}+1=6
Whakareatia te 19 ki te 3, ka 57.
-32+\frac{7}{12}+1=6
Tangohia te 57 i te 25, ka -32.
-\frac{384}{12}+\frac{7}{12}+1=6
Me tahuri te -32 ki te hautau -\frac{384}{12}.
\frac{-384+7}{12}+1=6
Tā te mea he rite te tauraro o -\frac{384}{12} me \frac{7}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{377}{12}+1=6
Tāpirihia te -384 ki te 7, ka -377.
-\frac{377}{12}+\frac{12}{12}=6
Me tahuri te 1 ki te hautau \frac{12}{12}.
\frac{-377+12}{12}=6
Tā te mea he rite te tauraro o -\frac{377}{12} me \frac{12}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{365}{12}=6
Tāpirihia te -377 ki te 12, ka -365.
-\frac{365}{12}=\frac{72}{12}
Me tahuri te 6 ki te hautau \frac{72}{12}.
\text{false}
Whakatauritea te -\frac{365}{12} me te \frac{72}{12}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}