Whakaoti mō a
a=\frac{\sqrt{14}}{5}-1\approx -0.251668523
a=-\frac{\sqrt{14}}{5}-1\approx -1.748331477
Tohaina
Kua tāruatia ki te papatopenga
1+2a+a^{2}=\frac{14}{25}
Whakawehea ngā taha e rua ki te 25.
1+2a+a^{2}-\frac{14}{25}=0
Tangohia te \frac{14}{25} mai i ngā taha e rua.
\frac{11}{25}+2a+a^{2}=0
Tangohia te \frac{14}{25} i te 1, ka \frac{11}{25}.
a^{2}+2a+\frac{11}{25}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-2±\sqrt{2^{2}-4\times \frac{11}{25}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 2 mō b, me \frac{11}{25} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-2±\sqrt{4-4\times \frac{11}{25}}}{2}
Pūrua 2.
a=\frac{-2±\sqrt{4-\frac{44}{25}}}{2}
Whakareatia -4 ki te \frac{11}{25}.
a=\frac{-2±\sqrt{\frac{56}{25}}}{2}
Tāpiri 4 ki te -\frac{44}{25}.
a=\frac{-2±\frac{2\sqrt{14}}{5}}{2}
Tuhia te pūtakerua o te \frac{56}{25}.
a=\frac{\frac{2\sqrt{14}}{5}-2}{2}
Nā, me whakaoti te whārite a=\frac{-2±\frac{2\sqrt{14}}{5}}{2} ina he tāpiri te ±. Tāpiri -2 ki te \frac{2\sqrt{14}}{5}.
a=\frac{\sqrt{14}}{5}-1
Whakawehe -2+\frac{2\sqrt{14}}{5} ki te 2.
a=\frac{-\frac{2\sqrt{14}}{5}-2}{2}
Nā, me whakaoti te whārite a=\frac{-2±\frac{2\sqrt{14}}{5}}{2} ina he tango te ±. Tango \frac{2\sqrt{14}}{5} mai i -2.
a=-\frac{\sqrt{14}}{5}-1
Whakawehe -2-\frac{2\sqrt{14}}{5} ki te 2.
a=\frac{\sqrt{14}}{5}-1 a=-\frac{\sqrt{14}}{5}-1
Kua oti te whārite te whakatau.
1+2a+a^{2}=\frac{14}{25}
Whakawehea ngā taha e rua ki te 25.
2a+a^{2}=\frac{14}{25}-1
Tangohia te 1 mai i ngā taha e rua.
2a+a^{2}=-\frac{11}{25}
Tangohia te 1 i te \frac{14}{25}, ka -\frac{11}{25}.
a^{2}+2a=-\frac{11}{25}
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
a^{2}+2a+1^{2}=-\frac{11}{25}+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}+2a+1=-\frac{11}{25}+1
Pūrua 1.
a^{2}+2a+1=\frac{14}{25}
Tāpiri -\frac{11}{25} ki te 1.
\left(a+1\right)^{2}=\frac{14}{25}
Tauwehea a^{2}+2a+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+1\right)^{2}}=\sqrt{\frac{14}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a+1=\frac{\sqrt{14}}{5} a+1=-\frac{\sqrt{14}}{5}
Whakarūnātia.
a=\frac{\sqrt{14}}{5}-1 a=-\frac{\sqrt{14}}{5}-1
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}