Whakaoti mō x
x=\frac{2}{5}=0.4
Graph
Tohaina
Kua tāruatia ki te papatopenga
25x^{2}-8x-12x=-4
Tangohia te 12x mai i ngā taha e rua.
25x^{2}-20x=-4
Pahekotia te -8x me -12x, ka -20x.
25x^{2}-20x+4=0
Me tāpiri te 4 ki ngā taha e rua.
a+b=-20 ab=25\times 4=100
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 25x^{2}+ax+bx+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-100 -2,-50 -4,-25 -5,-20 -10,-10
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 100.
-1-100=-101 -2-50=-52 -4-25=-29 -5-20=-25 -10-10=-20
Tātaihia te tapeke mō ia takirua.
a=-10 b=-10
Ko te otinga te takirua ka hoatu i te tapeke -20.
\left(25x^{2}-10x\right)+\left(-10x+4\right)
Tuhia anō te 25x^{2}-20x+4 hei \left(25x^{2}-10x\right)+\left(-10x+4\right).
5x\left(5x-2\right)-2\left(5x-2\right)
Tauwehea te 5x i te tuatahi me te -2 i te rōpū tuarua.
\left(5x-2\right)\left(5x-2\right)
Whakatauwehea atu te kīanga pātahi 5x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(5x-2\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=\frac{2}{5}
Hei kimi i te otinga whārite, whakaotia te 5x-2=0.
25x^{2}-8x-12x=-4
Tangohia te 12x mai i ngā taha e rua.
25x^{2}-20x=-4
Pahekotia te -8x me -12x, ka -20x.
25x^{2}-20x+4=0
Me tāpiri te 4 ki ngā taha e rua.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 25\times 4}}{2\times 25}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 25 mō a, -20 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 25\times 4}}{2\times 25}
Pūrua -20.
x=\frac{-\left(-20\right)±\sqrt{400-100\times 4}}{2\times 25}
Whakareatia -4 ki te 25.
x=\frac{-\left(-20\right)±\sqrt{400-400}}{2\times 25}
Whakareatia -100 ki te 4.
x=\frac{-\left(-20\right)±\sqrt{0}}{2\times 25}
Tāpiri 400 ki te -400.
x=-\frac{-20}{2\times 25}
Tuhia te pūtakerua o te 0.
x=\frac{20}{2\times 25}
Ko te tauaro o -20 ko 20.
x=\frac{20}{50}
Whakareatia 2 ki te 25.
x=\frac{2}{5}
Whakahekea te hautanga \frac{20}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
25x^{2}-8x-12x=-4
Tangohia te 12x mai i ngā taha e rua.
25x^{2}-20x=-4
Pahekotia te -8x me -12x, ka -20x.
\frac{25x^{2}-20x}{25}=-\frac{4}{25}
Whakawehea ngā taha e rua ki te 25.
x^{2}+\left(-\frac{20}{25}\right)x=-\frac{4}{25}
Mā te whakawehe ki te 25 ka wetekia te whakareanga ki te 25.
x^{2}-\frac{4}{5}x=-\frac{4}{25}
Whakahekea te hautanga \frac{-20}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x^{2}-\frac{4}{5}x+\left(-\frac{2}{5}\right)^{2}=-\frac{4}{25}+\left(-\frac{2}{5}\right)^{2}
Whakawehea te -\frac{4}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{2}{5}. Nā, tāpiria te pūrua o te -\frac{2}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{4}{5}x+\frac{4}{25}=\frac{-4+4}{25}
Pūruatia -\frac{2}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{4}{5}x+\frac{4}{25}=0
Tāpiri -\frac{4}{25} ki te \frac{4}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{2}{5}\right)^{2}=0
Tauwehea x^{2}-\frac{4}{5}x+\frac{4}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{5}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{2}{5}=0 x-\frac{2}{5}=0
Whakarūnātia.
x=\frac{2}{5} x=\frac{2}{5}
Me tāpiri \frac{2}{5} ki ngā taha e rua o te whārite.
x=\frac{2}{5}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}