Whakaoti mō x
x=-\frac{3}{5}=-0.6
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=30 ab=25\times 9=225
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 25x^{2}+ax+bx+9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,225 3,75 5,45 9,25 15,15
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 225.
1+225=226 3+75=78 5+45=50 9+25=34 15+15=30
Tātaihia te tapeke mō ia takirua.
a=15 b=15
Ko te otinga te takirua ka hoatu i te tapeke 30.
\left(25x^{2}+15x\right)+\left(15x+9\right)
Tuhia anō te 25x^{2}+30x+9 hei \left(25x^{2}+15x\right)+\left(15x+9\right).
5x\left(5x+3\right)+3\left(5x+3\right)
Tauwehea te 5x i te tuatahi me te 3 i te rōpū tuarua.
\left(5x+3\right)\left(5x+3\right)
Whakatauwehea atu te kīanga pātahi 5x+3 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(5x+3\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=-\frac{3}{5}
Hei kimi i te otinga whārite, whakaotia te 5x+3=0.
25x^{2}+30x+9=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-30±\sqrt{30^{2}-4\times 25\times 9}}{2\times 25}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 25 mō a, 30 mō b, me 9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\times 25\times 9}}{2\times 25}
Pūrua 30.
x=\frac{-30±\sqrt{900-100\times 9}}{2\times 25}
Whakareatia -4 ki te 25.
x=\frac{-30±\sqrt{900-900}}{2\times 25}
Whakareatia -100 ki te 9.
x=\frac{-30±\sqrt{0}}{2\times 25}
Tāpiri 900 ki te -900.
x=-\frac{30}{2\times 25}
Tuhia te pūtakerua o te 0.
x=-\frac{30}{50}
Whakareatia 2 ki te 25.
x=-\frac{3}{5}
Whakahekea te hautanga \frac{-30}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
25x^{2}+30x+9=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
25x^{2}+30x+9-9=-9
Me tango 9 mai i ngā taha e rua o te whārite.
25x^{2}+30x=-9
Mā te tango i te 9 i a ia ake anō ka toe ko te 0.
\frac{25x^{2}+30x}{25}=-\frac{9}{25}
Whakawehea ngā taha e rua ki te 25.
x^{2}+\frac{30}{25}x=-\frac{9}{25}
Mā te whakawehe ki te 25 ka wetekia te whakareanga ki te 25.
x^{2}+\frac{6}{5}x=-\frac{9}{25}
Whakahekea te hautanga \frac{30}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x^{2}+\frac{6}{5}x+\left(\frac{3}{5}\right)^{2}=-\frac{9}{25}+\left(\frac{3}{5}\right)^{2}
Whakawehea te \frac{6}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{5}. Nā, tāpiria te pūrua o te \frac{3}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{-9+9}{25}
Pūruatia \frac{3}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{6}{5}x+\frac{9}{25}=0
Tāpiri -\frac{9}{25} ki te \frac{9}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{3}{5}\right)^{2}=0
Tauwehea x^{2}+\frac{6}{5}x+\frac{9}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{5}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{5}=0 x+\frac{3}{5}=0
Whakarūnātia.
x=-\frac{3}{5} x=-\frac{3}{5}
Me tango \frac{3}{5} mai i ngā taha e rua o te whārite.
x=-\frac{3}{5}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}