Whakaoti mō x
x=-30
x=20
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+10x-600=0
Whakawehea ngā taha e rua ki te 25.
a+b=10 ab=1\left(-600\right)=-600
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-600. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,600 -2,300 -3,200 -4,150 -5,120 -6,100 -8,75 -10,60 -12,50 -15,40 -20,30 -24,25
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -600.
-1+600=599 -2+300=298 -3+200=197 -4+150=146 -5+120=115 -6+100=94 -8+75=67 -10+60=50 -12+50=38 -15+40=25 -20+30=10 -24+25=1
Tātaihia te tapeke mō ia takirua.
a=-20 b=30
Ko te otinga te takirua ka hoatu i te tapeke 10.
\left(x^{2}-20x\right)+\left(30x-600\right)
Tuhia anō te x^{2}+10x-600 hei \left(x^{2}-20x\right)+\left(30x-600\right).
x\left(x-20\right)+30\left(x-20\right)
Tauwehea te x i te tuatahi me te 30 i te rōpū tuarua.
\left(x-20\right)\left(x+30\right)
Whakatauwehea atu te kīanga pātahi x-20 mā te whakamahi i te āhuatanga tātai tohatoha.
x=20 x=-30
Hei kimi otinga whārite, me whakaoti te x-20=0 me te x+30=0.
25x^{2}+250x-15000=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-250±\sqrt{250^{2}-4\times 25\left(-15000\right)}}{2\times 25}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 25 mō a, 250 mō b, me -15000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-250±\sqrt{62500-4\times 25\left(-15000\right)}}{2\times 25}
Pūrua 250.
x=\frac{-250±\sqrt{62500-100\left(-15000\right)}}{2\times 25}
Whakareatia -4 ki te 25.
x=\frac{-250±\sqrt{62500+1500000}}{2\times 25}
Whakareatia -100 ki te -15000.
x=\frac{-250±\sqrt{1562500}}{2\times 25}
Tāpiri 62500 ki te 1500000.
x=\frac{-250±1250}{2\times 25}
Tuhia te pūtakerua o te 1562500.
x=\frac{-250±1250}{50}
Whakareatia 2 ki te 25.
x=\frac{1000}{50}
Nā, me whakaoti te whārite x=\frac{-250±1250}{50} ina he tāpiri te ±. Tāpiri -250 ki te 1250.
x=20
Whakawehe 1000 ki te 50.
x=-\frac{1500}{50}
Nā, me whakaoti te whārite x=\frac{-250±1250}{50} ina he tango te ±. Tango 1250 mai i -250.
x=-30
Whakawehe -1500 ki te 50.
x=20 x=-30
Kua oti te whārite te whakatau.
25x^{2}+250x-15000=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
25x^{2}+250x-15000-\left(-15000\right)=-\left(-15000\right)
Me tāpiri 15000 ki ngā taha e rua o te whārite.
25x^{2}+250x=-\left(-15000\right)
Mā te tango i te -15000 i a ia ake anō ka toe ko te 0.
25x^{2}+250x=15000
Tango -15000 mai i 0.
\frac{25x^{2}+250x}{25}=\frac{15000}{25}
Whakawehea ngā taha e rua ki te 25.
x^{2}+\frac{250}{25}x=\frac{15000}{25}
Mā te whakawehe ki te 25 ka wetekia te whakareanga ki te 25.
x^{2}+10x=\frac{15000}{25}
Whakawehe 250 ki te 25.
x^{2}+10x=600
Whakawehe 15000 ki te 25.
x^{2}+10x+5^{2}=600+5^{2}
Whakawehea te 10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 5. Nā, tāpiria te pūrua o te 5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+10x+25=600+25
Pūrua 5.
x^{2}+10x+25=625
Tāpiri 600 ki te 25.
\left(x+5\right)^{2}=625
Tauwehea x^{2}+10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{625}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+5=25 x+5=-25
Whakarūnātia.
x=20 x=-30
Me tango 5 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}