Whakaoti mō x (complex solution)
x=\frac{-100+2\sqrt{1910}i}{63}\approx -1.587301587+1.387414183i
x=\frac{-2\sqrt{1910}i-100}{63}\approx -1.587301587-1.387414183i
Graph
Tohaina
Kua tāruatia ki te papatopenga
25\left(16+8x+x^{2}\right)+7\left(5-x\right)\left(5+x\right)=295-45x^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(4+x\right)^{2}.
400+200x+25x^{2}+7\left(5-x\right)\left(5+x\right)=295-45x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 25 ki te 16+8x+x^{2}.
400+200x+25x^{2}+\left(35-7x\right)\left(5+x\right)=295-45x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te 5-x.
400+200x+25x^{2}+175-7x^{2}=295-45x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 35-7x ki te 5+x ka whakakotahi i ngā kupu rite.
575+200x+25x^{2}-7x^{2}=295-45x^{2}
Tāpirihia te 400 ki te 175, ka 575.
575+200x+18x^{2}=295-45x^{2}
Pahekotia te 25x^{2} me -7x^{2}, ka 18x^{2}.
575+200x+18x^{2}-295=-45x^{2}
Tangohia te 295 mai i ngā taha e rua.
280+200x+18x^{2}=-45x^{2}
Tangohia te 295 i te 575, ka 280.
280+200x+18x^{2}+45x^{2}=0
Me tāpiri te 45x^{2} ki ngā taha e rua.
280+200x+63x^{2}=0
Pahekotia te 18x^{2} me 45x^{2}, ka 63x^{2}.
63x^{2}+200x+280=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-200±\sqrt{200^{2}-4\times 63\times 280}}{2\times 63}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 63 mō a, 200 mō b, me 280 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-200±\sqrt{40000-4\times 63\times 280}}{2\times 63}
Pūrua 200.
x=\frac{-200±\sqrt{40000-252\times 280}}{2\times 63}
Whakareatia -4 ki te 63.
x=\frac{-200±\sqrt{40000-70560}}{2\times 63}
Whakareatia -252 ki te 280.
x=\frac{-200±\sqrt{-30560}}{2\times 63}
Tāpiri 40000 ki te -70560.
x=\frac{-200±4\sqrt{1910}i}{2\times 63}
Tuhia te pūtakerua o te -30560.
x=\frac{-200±4\sqrt{1910}i}{126}
Whakareatia 2 ki te 63.
x=\frac{-200+4\sqrt{1910}i}{126}
Nā, me whakaoti te whārite x=\frac{-200±4\sqrt{1910}i}{126} ina he tāpiri te ±. Tāpiri -200 ki te 4i\sqrt{1910}.
x=\frac{-100+2\sqrt{1910}i}{63}
Whakawehe -200+4i\sqrt{1910} ki te 126.
x=\frac{-4\sqrt{1910}i-200}{126}
Nā, me whakaoti te whārite x=\frac{-200±4\sqrt{1910}i}{126} ina he tango te ±. Tango 4i\sqrt{1910} mai i -200.
x=\frac{-2\sqrt{1910}i-100}{63}
Whakawehe -200-4i\sqrt{1910} ki te 126.
x=\frac{-100+2\sqrt{1910}i}{63} x=\frac{-2\sqrt{1910}i-100}{63}
Kua oti te whārite te whakatau.
25\left(16+8x+x^{2}\right)+7\left(5-x\right)\left(5+x\right)=295-45x^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(4+x\right)^{2}.
400+200x+25x^{2}+7\left(5-x\right)\left(5+x\right)=295-45x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 25 ki te 16+8x+x^{2}.
400+200x+25x^{2}+\left(35-7x\right)\left(5+x\right)=295-45x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te 5-x.
400+200x+25x^{2}+175-7x^{2}=295-45x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 35-7x ki te 5+x ka whakakotahi i ngā kupu rite.
575+200x+25x^{2}-7x^{2}=295-45x^{2}
Tāpirihia te 400 ki te 175, ka 575.
575+200x+18x^{2}=295-45x^{2}
Pahekotia te 25x^{2} me -7x^{2}, ka 18x^{2}.
575+200x+18x^{2}+45x^{2}=295
Me tāpiri te 45x^{2} ki ngā taha e rua.
575+200x+63x^{2}=295
Pahekotia te 18x^{2} me 45x^{2}, ka 63x^{2}.
200x+63x^{2}=295-575
Tangohia te 575 mai i ngā taha e rua.
200x+63x^{2}=-280
Tangohia te 575 i te 295, ka -280.
63x^{2}+200x=-280
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{63x^{2}+200x}{63}=-\frac{280}{63}
Whakawehea ngā taha e rua ki te 63.
x^{2}+\frac{200}{63}x=-\frac{280}{63}
Mā te whakawehe ki te 63 ka wetekia te whakareanga ki te 63.
x^{2}+\frac{200}{63}x=-\frac{40}{9}
Whakahekea te hautanga \frac{-280}{63} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
x^{2}+\frac{200}{63}x+\left(\frac{100}{63}\right)^{2}=-\frac{40}{9}+\left(\frac{100}{63}\right)^{2}
Whakawehea te \frac{200}{63}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{100}{63}. Nā, tāpiria te pūrua o te \frac{100}{63} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{200}{63}x+\frac{10000}{3969}=-\frac{40}{9}+\frac{10000}{3969}
Pūruatia \frac{100}{63} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{200}{63}x+\frac{10000}{3969}=-\frac{7640}{3969}
Tāpiri -\frac{40}{9} ki te \frac{10000}{3969} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{100}{63}\right)^{2}=-\frac{7640}{3969}
Tauwehea x^{2}+\frac{200}{63}x+\frac{10000}{3969}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{100}{63}\right)^{2}}=\sqrt{-\frac{7640}{3969}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{100}{63}=\frac{2\sqrt{1910}i}{63} x+\frac{100}{63}=-\frac{2\sqrt{1910}i}{63}
Whakarūnātia.
x=\frac{-100+2\sqrt{1910}i}{63} x=\frac{-2\sqrt{1910}i-100}{63}
Me tango \frac{100}{63} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}