Aromātai
\frac{33}{20}=1.65
Tauwehe
\frac{3 \cdot 11}{2 ^ {2} \cdot 5} = 1\frac{13}{20} = 1.65
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}\times \frac{1\times 2+1}{2}\times \frac{2\times 5+1}{5}
Whakahekea te hautanga \frac{25}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{1}{2}\times \frac{2+1}{2}\times \frac{2\times 5+1}{5}
Whakareatia te 1 ki te 2, ka 2.
\frac{1}{2}\times \frac{3}{2}\times \frac{2\times 5+1}{5}
Tāpirihia te 2 ki te 1, ka 3.
\frac{1\times 3}{2\times 2}\times \frac{2\times 5+1}{5}
Me whakarea te \frac{1}{2} ki te \frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3}{4}\times \frac{2\times 5+1}{5}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 3}{2\times 2}.
\frac{3}{4}\times \frac{10+1}{5}
Whakareatia te 2 ki te 5, ka 10.
\frac{3}{4}\times \frac{11}{5}
Tāpirihia te 10 ki te 1, ka 11.
\frac{3\times 11}{4\times 5}
Me whakarea te \frac{3}{4} ki te \frac{11}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{33}{20}
Mahia ngā whakarea i roto i te hautanga \frac{3\times 11}{4\times 5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}